Simulink® Design Optimization™
User's Guide

R2014b

MATLAB&SIMULINK

<} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Design Optimization™ User's Guide

© COPYRIGHT 1993-2014 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used

or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1 (Release 2009a)
Revised for Version 1.1 (Release 2009b)
Revised for Version 1.1.1 (Release 2010a)
Revised for Version 1.2 (Release 2010b)
Revised for Version 1.2.1 (Release 2011a)
Revised for Version 2.0 (Release 2011b)
Revised for Version 2.1 (Release 2012a)
Revised for Version 2.2 (Release 2012b)
Revised for Version 2.3 (Release 2013a)
Revised for Version 2.4 (Release 2013b)
Revised for Version 2.5 (Release 2014a)
Revised for Version 2.6 (Release 2014b)

Contents

Data Analysis and Processing

Model Requirements for Importing Data 1-2
Select Input Signals 1-3
Select Output Signals 14

Import Data 1-6
Create Experiment u.... 1-6
Time-Domain Data 1-8
Time-Series Data 1-11
Complex Data 1-12

Plot and Analyze Data 1-13
Why Plot the Data Before Parameter Estimation 1-13
Plot Data i 1-13

Ways to Preprocess Data 1-16

Preprocess Data 1-17
Remove Offset 1-17
Scale Data e 1-18
Extract Data i 1-19
Resample Data 1-19
Replace Data 1-20
Filter Data 1-21

Add Preprocessed Data Sets to Estimation Project (GUI) . 1-23

Overwriting an Existing Data Set 1-23
Creatinga New Data Set 1-24
Export Prepared Data to the MATLAB Workspace 1-26

vi

Contents

Parameter Estimation

2|

What Is an Experiment?

Specify Estimation Data
Create Experiment
Specify Data

Specify Parameters for Estimation
Choosing Which Parameters to Est

Specify Parameters for Estimation

Specify Independent Parameters to

imate First

Estimate

Specify Known Initial States
When to Specify Initial States Versus Estimate Initial States

Specify Model Initial States
Experiment Editor
Specify Experiments for Estimation

Progress Plots

Types of Plots

Basic Steps for Creating Plots . . .

Estimation Options
Access Estimation Options
General Options
Optimization Options

Specify Goodness of Fit Criteria (Cost Function)

Progress Display Options
Run Estimation

Model Validation

Load and Import Validation Data

Specify Experiments for Validation

2-3
2-4
2-4

2-8

2-8

2-8
2-14
2-18
2-18
2-18
2-22
2-24
2-25
2-25
2-25
2-31
2-31
2-31
2-33
2-36
2-37
2-39
2-46
2-47

2-48

Select Results for Validation 2-50

Select Plots and Run Validation 2-52
Compare Measured and Simulated Responses 2-54
Experiment Plot 2-54
Residuals Plot 2-55
Accelerating Model Simulations During Estimation 2-57
About Accelerating Model Simulations During Estimation . 2-57
Limitations 2-57
Setting the Accelerator Mode for Parameter Estimation . . . 2-57
Speedup Using Parallel Computing 2-59
When to Use Parallel Computing for Parameter Estimation 2-59
How Parallel Computing Speeds Up Estimation 2-59
How to Use Parallel Computing 2-63
Configure Your System for Parallel Computing 2-63
Model Dependenciesc ... 2-63
Estimate Parameters Using Parallel Computing 2-64
Estimate Parameters Using Parallel Computing (Code) 2-67
Troubleshooting 2-68
Estimating Initial Conditions for Blocks with External Initial
Conditions e 2-71
Estimation Sessions 2-72
Structure of an Estimation Session 2-72
Save Parameter Estimation Tool Sessions 2-72
Load Parameter Estimation Tool Sessions 2-73
Load Legacy Projects 2-73

How the Software Formulates Parameter Estimation as an

Optimization Problem 2-74
Overview of Parameter Estimation as an Optimization
Problem 2-74
Cost Function 2-74
Bounds and Constraints 2-76
Optimization Methods and Problem Formulations 2-77
Writing a Cost Function 2-85
Cost Function Overviewouuuineun.. 2-85

vii

viii

Contents

Convenience Objects
Inputs e
Evaluate Requirements
OUutputs . ..o e
Gradient Computations
Estimate Model Parameter Values (Code)
Estimate Model Parameters and Initial States (Code) . ..

Estimate Model Parameters using Multiple Experiments
(Code)

Estimate Model Parameters Per Experiment (Code)

Estimate Model Parameters with Parameter Constraints
(Code) ... e

Estimate Model Parameter Values (GUI)
Estimate Model Parameters Per Experiment (GUI)

Estimate Model Parameters and Initial States (GUI)

2-86
2-87
2-88
2-89
2-92
2-93

2-105

2-116

2-128

2-141

2-152

2-166

2-184

Response Optimization

3

How the Optimization Algorithm Formulates Minimization
Problems e
Feasibility Problem and Constraint Formulation
Tracking Problem
Gradient Descent Method Problem Formulations
Simplex Search Method Problem Formulations
Pattern Search Method Problem Formulations

Gradient Computations

Specify SignalstoLog

3-6

Specifying Step Response Characteristics
Specify Step Response Characteristics

Specifying Custom Requirements

Move Constraints

Move Constraints Graphically
Position Constraints Exactly

Specify Time-Domain Design Requirements
Specify Piecewise-Linear Lower and Upper Bounds
Specify Signal Property Requirements
Specify Step Response Characteristics
Track Reference Signals
Specify Custom Requirements
Edit Design Requirements

Edit Design Requirements
Edit Design Requirement Dialog Box Parameters

Specify Frequency-Domain Design Requirements
Specify Lower Bounds on Gain and Phase Margin
Specify Piecewise-Linear Lower and Upper Bounds on

Frequency Response
Specify Bound on Closed-Loop Peak Gain
Specify Lower Bound on Damping Ratio
Specify Upper and Lower Bounds on Natural Frequency . . .
Specify Upper Bound on Approximate Settling Time

Specify Piecewise-Linear Upper and Lower Bounds on Singular

Values

Specify Step Response Characteristics
Specify Custom Requirements

Specify Design Variables

Specify Independent Parameters to Optimize

Update Model with Design Variables Set

General Options .

Accessing General Options
Progress Options

Result Options

3-13
3-13

3-17

3-20
3-20
3-21

3-23
3-23
3-24
3-13
3-30
3-33
3-36

3-38
3-38

3-40
3-40

3-42
3-44
3-46
3-48
3-50

3-52
3-13
3-33
3-62
3-64
3-68
3-70
3-70

3-70
3-71

ix

Optimization Options 3-74

Accessing Optimization Options 3-74
Selecting Optimization Methods 3-75
Selecting Optimization Termination Options 3-76
Selecting Additional Optimization Options 3-77
Create Linearization I/O Sets 3-79
Create Linearization I/O Set 3-79
Linearization Options 3-81
Accessing Linearization Options 3-81
Configuring Linearization Options 3-81
Plots in the Design Optimization Tool 3-84
Adding Plots in Design Optimization Tool 3-84
Plotting Current Response 3-84
Plotting Intermediate Steps 3-84
Modifying Plot Properties 3-84
Plot Types o e 3-86
Export Design Variables and Requirement Values for an
Tteration 3-89

Compare Requirements and Design Variables Using Spider
Plot e 3-90

Export Design Variable Values for Specific Iteration 3-93

Design Optimization to Meet Time- and Frequency-Domain

Requirements (GUI) 3-95
Design Optimization to Meet a Custom Objective (GUI) . . 3-112
Design Optimization to Meet a Custom Objective (Code) . 3-133

Design Optimization to Meet Custom Signal Requirements
(GUD .. 3-142

Design Optimization to Meet Frequency-Domain
Requirements (GUI) 3-147

Specify Custom Signal Objective with Uncertain Variable
(GUI) .. e 3-166

X Contents

Design Optimization with Uncertain Variables (Code) . ..

Generate MATLAB Code for Design Optimization Problems
(GUI) .. e

Skip Model Simulation Based on Parameter Constraint
Violation (GUI)

Optimizing Parameters for Robustness
What Is Robustness?
Sampling Methods for Uncertain Parameters
Optimize Parameters for Robustness (GUI)

Accelerating Model Simulations During Optimization . ..
About Accelerating Optimization
Limitations
Setting Accelerator Mode for Response Optimization

Speedup Using Parallel Computing
When to Use Parallel Computing for Response Optimization
How Parallel Computing Speeds Up Optimization

How to Use Parallel Computing
Configure Your System for Parallel Computing
Model Dependenciesu ...
Optimize Design Using Parallel Computing (GUI)
Optimize Design Using Parallel Computing (Code)
Troubleshooting

Optimization Does Not Make Progress
Should I worry about the scale of my responses and how
constraints and design requirements are discretized? . .
Why don't the responses and parameter values change at
all?
Why does the optimization stall?

Optimization Convergence
What to do if the optimization does not get close to an
acceptable solution?
Why does the optimization terminate before exceeding the

maximum number of iterations, with a solution that does not

satisfy all the constraints or design requirements?

3-177

3-187

3-193

3-207
3-207
3-208
3-210

3-218
3-218
3-218
3-218

3-220
3-220
3-220
3-224
3-224
3-224
3-225
3-228
3-229
3-232
3-232

3-232
3-232

3-234

3-234

3-235

xi

xii

What to do if the optimization takes a long time to converge

even though it is close to a solution? 3-235
What to do if the response becomes unstable and does not
TECOVET o it i it e e e e 3-236
Optimization Speed and Parallel Computing 3-237
How can I speed up the optimization? 3-237
Why are the optimization results with and without using
parallel computing different? 3-238
Why do I not see the optimization speedup I expected using
parallel computing? 3-238
Why does the optimization using parallel computing not make
ANY PrOCreSS? o o v ittt e e 3-238
Why does the optimization using parallel computing not stop
when I click the Stop optimization button? 3-239
Undesirable Parameter Values 3-240
What to do if the optimization drives the tuned compensator
elements and parameters to undesirable values? 3-240
What to do if the optimization violates bounds on parameter
values? 3-240
Reverting to Initial Parameter Values 3-242
How do I quit an optimization and revert to my initial
parameter values? 3-242
Manage Design Optimization Tool Session 3-243
Save @ SeSSION . .o v vt 3-243
Load a Session 3-243

Optimizing Time-Domain Response of Simulink® Models
Using Parallel Computing 3-245

Sensitivity Analysis

4

What Is Sensitivity Analysis? 4-2
Sampling Parameters for Sensitivity Analysis 4-4
Probability Distribution 4-4

Contents

Bounds e
Number of Samples
Method of Sampling
Custom Sample Sets

Sensitivity Analysis Methods
Visual Analysis
Quantitative Analysis

Perform Sensitivity Analysis Using Parallel Computing . .
Configure Your System for Parallel Computing
Model Dependenciesc.iiiiiinunnn...
Perform Sensitivity Analysis Using Parallel Computing . . .

Design Exploration using Parameter Sampling (Code) . . .

Identify Key Parameters for Estimation (Code)

4-5
4-5
4-5
4-7

4-11
4-11
4-11

4-14
4-14
4-14
4-15
4-17

4-32

Optimization-Based Control Design

S|

Overview of Optimization-Based Compensator Design

Time-Domain Design Requirements in Simulink
Specify Piecewise-Linear Lower and Upper Bounds
Specify Step Response Characteristics
Track Reference Signals
Specify Custom Requirements
Edit Design Requirements

Frequency-Domain Design Requirements in Simulink
Specify Lower Bounds on Gain and Phase Margin
Specify Piecewise-Linear Lower and Upper Bounds on

Frequency Response
Specify Bound on Closed-Loop Peak Gain
Specify Lower Bound on Damping Ratio
Specify Upper and Lower Bounds on Natural Frequency . . .
Specify Upper Bound on Approximate Settling Time
Specify Piecewise-Linear Upper and Lower Bounds on Singular

Values

5-23
5-13
5-30
5-33
5-36

5-16
5-40

5-42
5-44
5-46
5-48
5-50

5-52

xiii

xiv

Contents

Specify Step Response Characteristics 5-13
Specify Custom Requirements 5-33

Time- and Frequency-Domain Requirements in SISO Design

Tool 5-38
Root Locus Diagrams 5-38
Open-Loop and Prefilter Bode Diagrams 5-40
Open-Loop Nichols Plots 5-40
Step/Impulse Response Plots 5-41

Time-Domain Simulations in SISO Design Tool 5-42

How to Design Optimization-Based Controllers for LTI
Systems 5-43

Optimize LTI System to Meet Frequency-Domain

Requirements, 5-44
Introduction 5-44
Design Requirements 5-44
Creating an LTI Plant Model 5-45
Creating Design and Analysis Plots 5-46
Creating a Response Optimization Task 5-48
Selecting Tunable Compensator Elements 5-50
Adding Design Requirements 5-51
Optimizing the System's Response 5-59
Creating and Displaying the Closed-Loop System 5-62

Designing Linear Controllers for Simulink Models 5-64

Lookup Tables

6/

What are Adaptive Lookup Tables? 6-2
Lookup Tables i 6-2
Adaptive Lookup Tables 6-2

How to Estimate Lookup Table Values 6-5

Estimate Constrained Values of a Lookup Table 6-6
ObJeCtIVES . o it 6-6

About the Data 6-6

Open a Parameter Estimation Session 6-6

Estimate the Monotonically Increasing Table Values Using
Default Settings 6-9
Validate the Estimation Results 6-17
Estimate Lookup Table Values from Data 6-23
ODbJeCtIVes . . . vt e 6-23
About the Data 6-23
Open a Parameter Estimation Session 6-23
Estimate the Table Values Using Default Settings 6-25
Validate the Estimation Results 6-33
Building Models Using Adaptive Lookup Table Blocks . .. 6-38
Selecting an Adaptation Method 6-42
Sample Mean 6-42
Sample Mean with Forgetting 6-43
Model Engine Using n-D Adaptive Lookup Table 6-44
ObjJectivVesot 6-44
About the Data 6-44
Building a Model Using Adaptive Lookup Table Blocks 6-45

Adapting the Lookup Table Values Using Time-Varying I/O
Data 6-54

Using Adaptive Lookup Tables in Real-Time Environment 6-58

Xv

xvi

Data Analysis and Processing

“Model Requirements for Importing Data” on page 1-2

“Import Data” on page 1-6

“Plot and Analyze Data” on page 1-13

“Ways to Preprocess Data” on page 1-16

“Preprocess Data” on page 1-17

“Add Preprocessed Data Sets to Estimation Project (GUI)” on page 1-23
“Export Prepared Data to the MATLAB Workspace” on page 1-26

1 Data Analysis and Processing

Model Requirements for Importing Data

1-2

In this section...

“Select Input Signals” on page 1-3

“Select Output Signals” on page 1-4

Before you can analyze and preprocess the estimation data, you must assign the data to
the model ports or signals. In order to assign the data, the Simulink® model must contain
one of the following elements:

Top-level Inport block

Note: You do not need an Inport block if your model already contains a fixed input
block, such as a Step block.

Top-level Outport block

Logged signal, which can be a top-level signal in the model or a signal in a model
subsystem

To enable signal logging for a signal, in the Simulink Editor, select the signal,

click the Record button arrow and click Log/Unlog Selected Signals. For
more information, see “Export Signal Data Using Signal Logging” in the Simulink
documentation.

When you create an experiment, as described in “Create Experiment” on page 2-4,

the top level input and output ports as well as logged signals are selected by default.
You can add or remove the input and output signals using the experiment editor. In
the experiment editor, the rows in the Inputs panel correspond to the model's top-level
Inport blocks.

Model Requirements for Importing Data

w Experiments

NewDats EdtBpeimentNewDaa
Outputs

Define measured output signals for this experiment.

engine idle speed/Sum:l

[<11 Signal, 7501 paints>| - B & x

w Results @ Select Meaured Output Signals

Inputs
Optionally define inputs signals for this experiment.
engine idle speed/BPAV:IL

| <7501:2 Signal> ~| B & x
Select Inputs

m

— T
Similarly, the rows in the Outputs panel correspond to either the top-level Outport
blocks or logged signals in the model.

Select Input Signals

You can add the Inport block in the experiment editor by clicking the Select Inputs
button in the Inputs panel to launch the Select Inputs dialog box. You can select the
Inport block you want by selecting the check box corresponding to it and clicking OK.
There is only one Inport block for the engine_idle_speed model.

b Inputs
engine _idle speed/BPAV:] (BRPAV]

o ok $Z cancel () Hep

Using the dialog box, you can import the input data by typing, for example,
[time, iodata(:,1)] in the Inputs panel. To learn more about importing data, see
Import Data.

1-3

Data Analysis and Processing

1-4

Inputs
Optionally define inputs signals for this experiment.
engine idle speed/BPAV:L [BPAV]

I8 v B & X

Select Output Signals

You can add the Output block in the experiment editor by clicking Select Measured
Output Signals in the Outputs panel to launch the Select Outputs dialog box. You
can select the Outport block you want by clicking the check box corresponding to it, and
clicking OK. There is only one Outport block for the engine_idle_speed model.

Select Qutputs ..
Click signals in the simulink model to add them to the output table.

b Outputs
engine idle speed/Sum:l (Engine Speed)

o_-:? OK g@ Cancel @ Help

Using the dialog box, you can import the output data by typing, for example,
[time, iodata(:,2)] in the Inputs panel. To learn more about importing data, see
Import Data.

Outputs
Define measured output signals for this experiment.
engine idle speed/Sum:l [Engine Speed)

|-<11r_‘l Signal, 1 points> '| B & X

Related Examples
. “Import Data” on page 1-6

Model Requirements for Importing Data

More About

. “What Is an Experiment?” on page 2-3

1-5

1 Data Analysis and Processing

Import Data

In this section...

“Create Experiment” on page 1-6
“Time-Domain Data” on page 1-8
“Time-Series Data” on page 1-11

“Complex Data” on page 1-12

Create Experiment

Before you begin data import, create an experiment. Simulink Design Optimization™
software provides a tool for setting up the estimation session.

To create an estimation session:

1 At the MATLAB® prompt, open the nonlinear idle speed model of an automotive
engine by typing :

engine_idle_speed

Idle Speed Engine Model

Monlinearities Linear Dynamics

@
Idle
Spesd

gaini

denis)

Transfer Fon

gain2 >

denis)
Transfer Fenl

Engine Spesd

gaind

den(s)

Transfer Fen2

GUI fo run an estimation.

The model contains the Inport block BPAV and Outport block Engine Speed
for importing input and output data, respectively. To learn more, see “Model
Requirements for Importing Data” on page 1-2.

2 In the Simulink model window, open the Parameter Estimation tool by selecting
Analysis > Parameter Estimation.

Import Data

-
arameter Estimation - engine_idle_spee
‘\P eter Estimat g dle_speed

[PARAMETER ESTIMATION VALIDATION

ﬁ Open Session «
E Save Session -

FILE

b & &2 L

Select New Select Add Plot Plot Model
F i i - Response
PARAMETERS EXPERIMENTS PLOT

Cost Function: Sum Squared Error «

FEPETRT==10] =

>

Estimate

ESTIMATE

Data Browser

w Parameters

w Experiments

w Results

w Preview

Parameter Estimation Tool

You can organize the estimation and validation tasks inside Experiments under
Data Browser panel on the left. You can assign each experiment to an estimation

task or validation task.

To create an experiment, click the New Experiment button.

1-7

1 Data Analysis and Processing

&

Mew
Experiment

This creates an experiment called Exp under Experiments. To change the name of
the experiment, right-click and select Rename. Call it NewData.

Note: The Simulink model must remain open to perform parameter estimation tasks.

Time-Domain Data

Experiments are collections of signal data, specifically input and output signal data.
After you create an experiment, as described in “Create Experiment” on page 1-6,
you can import data into your experiment from various sources including MATLAB®
variables, MAT-files, Excel® files, or comma-separated-value files.

To import data into your experiment right-click and select Edit.... This will launch the
experiment editor. In the experiment editor, you can define the signals contained in the
experiment.

Import Data

Edit Experiment: Exp bt

Qutputs m
Define measured output signals for this experiment.

engine idle speed/Sum:l (Engine Speed

<1l Signal, 1 points> =" .&. X

@ Select Meaured Output Signals

Inputs
Optionally define inputs signals for this experiment.

engine idle speed/EPAV:] [EPAV

<1x2 Signal=> | Oz & x| 2

E Select Inputs

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

2 select Initial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment.

[Select Parameters

For example, the rows in the Inputs panel of the editor correspond to Inport block BPAV
in the engine_idle_speed model.

The rows in the Outputs panel correspond to Outport block Engine Speed. You can
import signal data from files or MATLAB workspace.

Note: The Simulink model must contain an Inport or Outport block or logged signals to
enable importing data. For more information, see “Model Requirements for Importing
Data”. To select more output signals to specify data for, click Select Measured Output
Signals in the Outputs panel.

The idle-speed model of an automotive engine contains the measured data stored in the
iodata array in the workspace. The array contains two columns: the first for input data,
and the second for output data. The time data is in the time array in the workspace. You
can import the input data by typing [time, 1odata(:,1)] in the Inputs panel.

1-9

1 Data Analysis and Processing

Inputs
Optionally define inputs signals for this experiment.
engine idle speed/BPAV:L (BPAN]

| time, iodatal:, 1] | B & X
@ Select Inputs

You can import the output data by typing [time, iodata(:,2)] in the Outputs panel.
You can view the data by clicking @ The input data should look like this:

O x
HH 750132 double 1
1 2 3 4
S I R -
2 0.0200 0 m
3 0.0400 0
4 0.0600 0
5 0.0800 0
Fd - I'r'\"'l [alalul [l r
Output data should look like this:
O x
tH 750132 double 5
1 2 3 4
1 713.2568 B
9 E
2 00200 713.2568
3 0.0400 709.0454
4 00600 704.4067
5 00800 699.8901
e ‘ I;\rr'll'\l'\l"\ EMnSAach r

1-10

Import Data

After importing the data for NewData experiment, the experiment editor looks like this:

Edit Experiment: MewData X

Outputs
Define measured output signals for this experiment.
engine idle speed/Sum:l (Engine Speed)

<1ul Signal, 7501 points> | B & X

@ Select Meaured Cutput Signals

Inputs
Optionally define inputs signals for this experiment.
engine idle speed/BPAV:L (BPAN]

<1xl Signal, 7501 points> - B X

m

@ Select Inputs

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

[select Initial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment.

E Select Parameters

To import data from a file, click the £ button.

To learn more about the Edit Experiment: dialog box, see “Experiment Editor” on page
2-22.

Time-Series Data

Time-series data is stored in time-series objects. For more information, see “Time Series
Objects” in the MATLAB documentation.

1-11

1 Data Analysis and Processing

When you import input data from a time-series object, T, for parameter estimation, you
must specify the time vector and data as [t.time,t. inputdata] in the Inport signal
dialog box. Similarly, to import output data, you must specify the time vector and data
as [t.time,t.outputdata] in the Outport signal dialog box. For more information on
how to import data into the experiment, see “Time-Domain Data” on page 1-8.

Complex Data

Complex-valued data is data whose value is a complex number. For example, a signal
with the value 1+2] is complex. You can use complex data to estimate parameters of
electrical systems, such as the magnitude and phase.

Note: You must sample the real and imaginary parts of the data as a function of the
same time vector.

To use complex data for parameter estimation:
1 Split the data into two data sets that contain the real and imaginary parts. To split
the data, use the MATLAB functions real, and imag.

2 Create two signals, one for the real part and one for the imaginary part for the
Inport or Outport block.

3 Select both signals in the experiment editor.

4 Import the data to the corresponding signal as described in “Time-Domain Data” on
page 1-8.

Related Examples
. “Plot and Analyze Data” on page 1-13

. “Preprocess Data” on page 1-17

More About

. “Model Requirements for Importing Data” on page 1-2

1-12

Plot and Analyze Data

Plot and Analyze Data

In this section...
“Why Plot the Data Before Parameter Estimation” on page 1-13
“Plot Data” on page 1-13

Why Plot the Data Before Parameter Estimation

After you import the estimation data as described in “Import Data” on page 1-6, you can
remove outliers, smooth, detrend, or otherwise treat the data to prepare for analysis and
estimation. To view and analyze data characteristics, plot the data on a time plot.

Plot Data

Use an experiment plot to visualize experiment data. First, create an experiment and
import data as described in “Import Data” on page 1-6. To create an experiment plot, in
the Parameter Estimation tool, on the Parameter Estimation tab, click Add Plot, and
select NewData under Experiment Plots.

ITERATION PLOTS

A P j

—— grameter Trajectory

."I 1 7 3 Display the parameter values as
they change during estimation.

| Estil i

— : imation Cos_t .

{1 2 3 Display the estimation cost as
! .)) .

it changes during estimation.

EXPERIMEMNT PLOTS

;/,7 MewData

This creates plots of the input signal for the Inport block BPAV and output signal for
the Outport block Engine Speed for the engine_idle_speed model (see “Create
Experiment” on page 1-6).

1-13

1 Data Analysis and Processing

T S - ‘
4 Parameter Estimation® - engine_idle_speed - Experiment plot: NewData EI@
[PARAMETER ESTIMATION WALIDATION EXPERIMENT PLOT
@ 2 L4 [>
1 Open Session E "" Cost Function: Sum Squared Error +
Select New Select Add Plot Plot Model Estimate
Save Session M
B P : I o & More Options s
FILE | PARAMETERS | EXPERIMENTS | PLOT | OPTIONS | ESTIMATE |
Data Browser 5] | Experiment plot: NewData 7 |

=

w Parameters

Input-Output Data

Engine Speed
1000 ghe p :
900 - J
800 - J
w Experiments
NewData R 7
600 - J
3]
= 500 I
2
Resul EL 2 BPAV
- t . i
esults Z
Tr 4
D—J/
w Preview 4l |
-
Measured cutput signal(s): ‘E =2 L 1
- Engine Speed Measured B 0 50 ‘ 100 150
input signal(s): il Time (seconds)

You can also plot the experiment data by right-clicking NewData and selecting Plot
measured experiment data from the list.

Using the time plot, you can examine the data characteristics such as noise, outliers and
portions of the data to use for estimating parameters. After you analyze the data, you can

preprocess it as described in “Preprocess Data” on page 1-17.

Related Examples
. “Import Data” on page 1-6

. “Preprocess Data” on page 1-17

1-14

Plot and Analyze Data

More About

. “Model Requirements for Importing Data” on page 1-2

1-15

1 Data Analysis and Processing

Ways to Preprocess Data

1-16

In the Parameter Estimation tool, after importing the estimation data as described in
“Import Data” on page 1-6, you can perform the following preprocessing operations:

+ “Extract Data” on page 1-19 — Exclude a portion of the data from the estimation
process. You can select the data to exclude graphically or by specifying a start time
and end time.

+ “Resample Data” on page 1-19 — Resample data using zero-order hold or linear
interpolation.

+ “Replace Data” on page 1-20 — Replace data with a constant value, region initial
value, region final value, or a line. You can use this functionality to replace outliers.

+ “Remove Offset” on page 1-17 — Remove mean values, a constant value, or an
initial value from the data.

+ “Scale Data” on page 1-18 — Scale data by a constant value, signal maximum
value, or signal initial value.

+ Filter — Smooth data using a low-pass, high-pass, or band-pass filter.

Related Examples
. “Import Data” on page 1-6

. “Preprocess Data” on page 1-17

More About

. “Model Requirements for Importing Data” on page 1-2

Preprocess Data

Preprocess Data

In this section...

“Remove Offset” on page 1-17
“Scale Data” on page 1-18
“Extract Data” on page 1-19
“Resample Data” on page 1-19
“Replace Data” on page 1-20

“Filter Data” on page 1-21

You can use the Parameter Estimation tool to preprocess data. After plotting the
measured data as shown in “Plot and Analyze Data” on page 1-13), you have access to the
Experiment Plot tab.

PARAMETER ESTIMATION VALDATION EXPERIMENT PLOT [ZE

F[] Grid | E E Remove Offset E Low-Pass Filter Resample Data F
5

[=ftegend | @ @ M . | Scale Data High-Pass Fiter | o] Replace Data .
{6} Properties [ExtractData || Band-Pass Fiter Response
VIEW ZOOM & PAN EDIT DATA PROCESSING FLOT

Remove Offset

On the Experiment Plot tab click Remove Offset.

PARAMETER ESTIMATION VALIDATION EXPERIMENT PLOT REMOVE OFFSET
O Remove offset from all signals Offset to remove: [%
™ Remove offset from signal:| Engine Speed ~ g - Update Close
hd Remove Offset
SIGNAL OFFSET UFDATE CLOSE

You can choose to remove offset from all signals or specify the signal you choose. Select
the value to remove from the Offset to remove drop down list. The options are:

* A constant value

1-17

1 Data Analysis and Processing

* Mean of the data, to create zero-mean data

+ Signal initial value

The modified data is shown in yellow in the experiment plot. After making choices,

update the existing data in the experiment with the new data by clicking in the
Update
Update section. Or to save the modified data values in a new experiment, click -

Save As
Create a new experiment

and select from the modified data

Scale Data

On the Experiment Plot tab, click Scale Data.

PARAMETER ESTIMATION WVALIDATION EXPERIMENT PLOT SCALE DATA
0 Scale all signals Scale to use: L %
™ Scale signal| Engine Speed - | |1 v Update Close
- Scale Data
SIGMAL SCALE UFDATE CLOSE

You can choose to scale all signals or specify a signal to scale. Select the value to scale the
data with using the Scale to use drop-down list. The options are:

+ A constant value
* Signal maximum value

+ Signal initial value

The modified data is shown in yellow in the experiment plot. After making choices,

update the existing data in the experiment with the new data by clicking in the

1-18

Preprocess Data

Update
Update section. Or to save the modified data values in a new experiment, click
Save As

Create a new experiment

and select from the modified data .

Extract Data

To extract a portion of your data to use in the estimation process, on the Experiment
Plot tab, click Extract Data.

PARAMETER ESTIMATION VALIDATION EXPERIMENT PLOT EXTRACT DATA
Start Time: |3?.5 | ‘1 23
End Time: |112.5 | Save As Close
Extract Data
EXTRACT DATA SAVE AS CLOSE

You can extract data graphically or by specifying start time and end time. To extract data
graphically, place your cursor in the Experiment Plot and drag the mouse to draw a
region of exclusion.

When you select a portion of the data, the background of that portion turns yellow. After
you choose the data to extract, you can save in a new experiment by clicking Save As.

Resample Data

On the Experiment Plot tab, click the Resample Data button.

PARAMETER ESTIMATION VALIDATION EXPERIMENT PLOT RESAMPLE DATA
Resample with sample period: |U.02 | P %
Resample Using: |Zern-order haold - | Update Close
- Re=ample Data
RESAMFLE DATA UFDATE CLOSE

1-19

1 Data Analysis and Processing

1-20

You can specify the sampling period using the Resample with sample period: field.
You can resample your data using one of the following interpolation methods:

+ Zero-order hold — Fill the missing data sample with the data value immediately
preceding it.

* Linear interpolation — Fill the missing data using a line that connects the two
data points.

By default, the resampling method is set to zero-order hold. You can select the
linear interpolation method from the Resample Using drop-down list.

The modified data is shown in yellow in the experiment plot. After making your choices,

update the existing data in the experiment with the new data by clicking in the
Update
Update section. Or to save the modified data values in a new experiment, click T

Save As
Create a new experiment

from the modified data
and select

Replace Data

On the Experiment Plot tab click the Replace Data button.

PARAMETER ESTIMATION WALIDATION EXPERIMENT PLOT REPLACE DATA
=) X
Replace =elected data Clear preview Update Close
- - Replace Data
REFLAGE DATA UFDATE CLOSE

You can see on the experiment plot that the preview data is in light brown. You can
select the data you would like to replace using your mouse. Once you select data, you
can choose how to replace it using the Replace selected data drop-down list. You can
replace the data you select with one of these options:

* A constant value

Preprocess Data

* Region initial value
* Region final value

+ Aline

You can also clear the region you selected and start over. After making choices, update

the existing data in the experiment with the new data by clicking in the Update
Update
section. Or to save the modified data values in a new experiment, click - and
Save As

Create a new experiment

from the modified data
select

You can use this functionality, for example, to replace outliers. Outliers are data values
that deviate from the mean by more than three standard deviations. When estimating
parameters from data containing outliers, the results may not be accurate. Hence, you
might choose to replace the outliers in the data before you estimate the parameters.

Filter Data

You can filter your data using a low-pass, high-pass, or band-pass filter. A low-pass
filter blocks high frequency signals, a high-pass filter blocks low frequency signals, and
a band-pass filter combines the properties of both low- and high-pass filters. On the
Experiment Plot tab click one of the Low-Pass Filter, High-Pass Filter, or Band-
Pass Filter to open a new tab. For example, the low-pass filter tab looks like

PARAMETER ESTIMATION VALIDATION EXPERIMENT PLOT LOW-PASS FILTER
O Fitter all signals MNormalized cutoff frequency: @ |> 83
= Fitter signal:| engine_idle_sp... 0.01 Options Update Close
- Low-Pass Filter
SIGNAL LOW-PASS FILTER UPDATE CLOSE

On the new tab, you can choose to filter all signals or specify a particular signal. For the
low-pass and high-pass filtering, you can specify the normalized cutoff frequency of the
signal. For the band-pass filter, you can specify the normalized start and end frequencies.

1-21

1 Data Analysis and Processing

1-22

Specify the frequencies by either entering the value in the associated field on the tab, or
graphically, by placing your cursor in the Experiment Plot and dragging your mouse.

Click Options to specify the filter order, and select zero-phase shift filter.

After making your choices, update the existing data in the experiment with the new data

by clicking in the Update section. Or to save the modified data values in a new
Save As
Update Create a new experiment
. . = T th dified dat
experiment, click and select bl

Add Preprocessed Data Sets to Estimation Project (GUI)

Add Preprocessed Data Sets to Estimation Project (GUI)

After you preprocess the data using the techniques described in “Ways to Preprocess
Data” on page 1-16, you can add the data set to an estimation project either by
overwriting an existing data set or creating a new data set.

In this section...

“Overwriting an Existing Data Set” on page 1-23
“Creating a New Data Set” on page 1-24

Overwriting an Existing Data Set

To overwrite an existing data set with the preprocessed data:

1

In the Write results to area of the Data Preprocessing Tool GUI, select the
existing dataset option.

Choose the data set you want to overwrite from the drop-down list.

IModify data From I...eed,l'Engine Speed vl Write results ko: €% existing dataset |...w Data = " new dataset IDatasetI

Mew Data k
Data Ediing LM

Click Add.

This action overwrites the selected data set with the modified data in the Control
and Estimation Tools Manager GUI.

1-23

1 Data Analysis and Processing

1-24

E!Enntrnl and Estimation Tools Manager i =] 5
File Wiew Help
=
50 S d|
<\ wiorkspare Input Data Output Data | State Data |
- Project - engine_idle_speed ~Assign data to Hlacks
E'- Estimation Task.
=1-[F Transient Data Elock Mame I Data I Time | Ts I Weight I Length
R a engine_idle_speed/Engine Speed
v, Channel - 1 tine(:, 1% | 1 | 7501/7501
Estimation
Ea Yalidation
Impart. .. Pre-process... Flot Data Clear Al |
- New Data node has been added to Transient Data. ﬂ
[
Select the tabbed panels to configure the transient data set, S

Tip You can export the preprocessed data to the MATLAB Workspace, as described in
“Export Prepared Data to the MATLAB Workspace” on page 1-26.

Creating a New Data Set

If you do not want to overwrite an existing data set with the preprocessed data, as
described in “Overwriting an Existing Data Set” on page 1-23, you can create a new
data set for the preprocessed data:

1 In the Write results to area of the Data Preprocessing Tool GUI, select the new
dataset option.

2 Specify the name of the data set in the adjacent field.

Add Preprocessed Data Sets to Estimation Project (GUI)

Modify data From I...eed,l'Engine Speed = l Write results ko {7 existing datasst |, ow Data + * new dataset
3 Click Add.

This action adds a new data node in the Control and Estimation Tools Manager GUI
containing the modified data.

E!l:ontrol and Estimation Tools Manager - ol =|

File Wiew Help

e il M= = | [

<\ orkspace Input Data Output Data | state Data |
- B Project - engine_idle_speed ~Assign data to blacks

=] Estimation Task
B[Transient Data Blockmame | Data | Time { Ts | welght | Length
] Mew Data engine_idle_speed/Engine Speed

Channel - 1 time:, 1% [1 [7501/7501
Variables
Estimation

Ea Yalidation

Impaort. .. Pre-process. .. Plot Data Clear all |
— New Data node has been added to Transient Data. ﬂ
[
Select the tabbed panels to configure the transient data set. v

Tip You can export the preprocessed data to the MATLAB Workspace, as described in
“Export Prepared Data to the MATLAB Workspace” on page 1-26.

1-25

1 Data Analysis and Processing

Export Prepared Data to the MATLAB Workspace

After you add the preprocessed data to an estimation project, as described in “Add
Preprocessed Data Sets to Estimation Project (GUI)” on page 1-23, you can export the
data set to the MATLAB Workspace. You can use the data to further prepare it or
estimate parameters using the data.

1 In the Transient Data node of the Control and Estimation Tools Manager GUI,
select the node containing the prepared data set.

2 Right-click the table Data cell containing the data that you want to export, and
select Export.
The Export to Workspace dialog box opens.

3 Specify the MATLAB variable names for the prepared data and the corresponding
time vector in the Data and Time fields, respectively.

RI=TES
[V Data plata
[+ Time time4|
OK | Cancel
4 Click OK.

The resulting MATLAB variables data and time4 appear in the MATLAB
Workspace browser.

1-26

Parameter Estimation

+ “What Is an Experiment?” on page 2-3

+ “Specify Estimation Data” on page 2-4

+ “Specify Parameters for Estimation” on page 2-8

+ “Specify Independent Parameters to Estimate” on page 2-14
+ “Specify Known Initial States” on page 2-18

+ “Experiment Editor” on page 2-22

+ “Specify Experiments for Estimation” on page 2-24

* “Progress Plots” on page 2-25

+ “Estimation Options” on page 2-31

* “Progress Display Options” on page 2-37

* “Run Estimation” on page 2-39

* “Model Validation” on page 2-46

* “Load and Import Validation Data” on page 2-47

* “Specify Experiments for Validation” on page 2-48

+ “Select Results for Validation” on page 2-50

+ “Select Plots and Run Validation” on page 2-52

* “Compare Measured and Simulated Responses” on page 2-54
+ “Accelerating Model Simulations During Estimation” on page 2-57
+ “Speedup Using Parallel Computing” on page 2-59

+ “How to Use Parallel Computing” on page 2-63

+ “Estimating Initial Conditions for Blocks with External Initial Conditions” on page
2-71

+ “Estimation Sessions” on page 2-72

* “How the Software Formulates Parameter Estimation as an Optimization Problem”
on page 2-74

2 Parameter Estimation

2-2

“Writing a Cost Function” on page 2-85

“Gradient Computations” on page 2-92

“Estimate Model Parameter Values (Code)” on page 2-93

“Estimate Model Parameters and Initial States (Code)” on page 2-105
“Estimate Model Parameters using Multiple Experiments (Code)” on page 2-116
“Estimate Model Parameters Per Experiment (Code)” on page 2-128

“Estimate Model Parameters with Parameter Constraints (Code)” on page 2-141
“Estimate Model Parameter Values (GUI)” on page 2-152

“Estimate Model Parameters Per Experiment (GUI)” on page 2-166

“Estimate Model Parameters and Initial States (GUI)” on page 2-184

What Is an Experiment?

What Is an Experiment?

To estimate unknown parameter values of a Simulink model, first create an experiment.
An experiment specifies measured input and output data. During estimation, the
experiment input data is used to simulate the model and the model output is compared
with the measured experiment output data. For more information about creating
experiments and importing data, see “Specify Estimation Data” on page 2-4.

In an experiment, you can specify initial-state values. To do so, specify the model initial
states for each experiment. You can optionally specify an initial guess for the initial state
values for any experiment. For more information, see “Specify Known Initial States” on
page 2-18.

To estimate a model parameter on a per-experiment basis, specify the model parameter
for each experiment. You can specify the initial values and limits for the parameter
value for any of the experiments. Alternatively, you can specify a parameter value as

a known quantity, not to be estimated. For more information, see “Specify Parameters
for Estimation” on page 2-8. You can choose to update experiments with estimated
model initial states and parameter values, or save the results in a new experiment. For
more information, see “Estimation Options” on page 2-31.

To use experiments for validating the estimated parameter values, see “Model
Validation” on page 2-46.

Related Examples

. “Specify Estimation Data” on page 2-4

. “Specify Parameters for Estimation” on page 2-8
. “Specify Known Initial States” on page 2-18

. “Specify Experiments for Estimation” on page 2-24

More About

. “Experiment Editor” on page 2-22

2 Parameter Estimation

Specify Estimation Data

In this section...

“Create Experiment” on page 2-4

“Specify Data” on page 2-6

Create Experiment

Before you specify estimation data, create an experiment. At the MATLAB prompt, open
the nonlinear idle speed model of an automotive engine by typing

engine_idle_speed

In the Simulink model window, open the Parameter Estimation tool by selecting
Analysis > Parameter Estimation.

2-4

Specify Estimation Data

. -
4 Parameter Estimation - engine_idle_speed =
[PARAMETER ESTIMATION WVALIDATION

| Open Session « % @ E E‘i Cost Function: Sum Squared Error « |>
(5] save Session » _ Select New Select Add Plot Plot Model &) hore Options... Estimate
F i i - Response -
FILE PARAMETERS EXFERIMENTS PLOT OPTIONS ESTIMATE

Data Browser

w Parameters

w Experiments

w Results

¥ Preview

In the Parameter Estimation tool, on the Parameter Estimation tab, click New
Experiment.

&

New
| Experiment

This action creates an experiment called EXp in the Experiments list in the Data
Browser panel and opens the experiment editor. To change the name of the experiment,
right-click Exp and select Rename. If you rename it NewData, the Experiments list
now looks like this:

2-5

2 Parameter Estimation

¥ Experiments

MewData

To learn more about how to further modify an experiment using the experiment editor,
see “Experiment Editor” on page 2-22.

Specify Data

After you create the experiment, you can import the estimation data into the experiment.
Launch the experiment editor by right-clicking on NewData and selecting Edit....

The rows in the Inputs panel of the editor correspond to Inport block BPAV in the
engine_idle_speed model. See “Import Data” on page 1-6.

The rows in the Outputs panel correspond to Outport block Engine Speed. You can
import signal data from files or MATLAB workspace.

The idle-speed model of an automotive engine contains the measured data stored in the
iodata array in the workspace. The array contains two columns: the first for input data,
and the second for output data. The time data is in the time array in the workspace.
You can import the input data by typing [time, iodata(:,1)] in the dialog box in the
Inputs panel.

Inputs
Optionally define inputs signals for this experiment.
engine idle speed/BPAV:] [BPAV]

| time,iodatal: L] ~| B & X

@ Select Inputs

You can import the output data by typing [time, iodata(:,2)] in the dialog box in the
Outputs panel.

Specify Estimation Data

Note: You can have more than one input or output signal, but you can have only one data
set for a signal. If you have multiple data sets, create multiple experiments.

Related Examples
. “Specify Parameters for Estimation” on page 2-8

“Specify Independent Parameters to Estimate” on page 2-14
. “Specify Known Initial States” on page 2-18

More About

. “What Is an Experiment?” on page 2-3
. “Experiment Editor” on page 2-22

2-7

2 Parameter Estimation

Specify Parameters for Estimation

2-8

In this section...

“Choosing Which Parameters to Estimate First” on page 2-8

“Specify Parameters for Estimation” on page 2-8

Choosing Which Parameters to Estimate First

Simulink Design Optimization software lets you estimate scalar, vector, and matrix
parameters. You can take an iterative approach to estimating model parameters. For
example, if you have a large number of parameters to estimate, start by estimating those
that most influence the output. After you estimate a subset of parameters and validate
the estimated parameters, you can select the remaining parameters for estimation.

Specify Parameters for Estimation

You can specify the parameters for estimation experiments using the Estimated
Parameters editor. In the Parameter Estimation tool, on the Parameter Estimation
tab, click Select Parameters.

]

Select
Parameters

To select parameters for all experiments, click Select Parameters in the Parameters
Tuned for all Experiments panel. This opens the Select model variables dialog.
Here you can select the parameters you want to estimate by clicking the check box next
to it or specifying an expression. For more information see “Select Parameters Using
Select Model Variables Dialog Box” on page 2-11.

The editor looks like

Specify Parameters for Estimation

Edit: Estimated Parameters

Parameters Tuned for all Experiments
There are no parameters selected for estimation.

[t Select parameters
Parameters and Initial States Tuned per Experiment
Experiment: |NewData =

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

Edit experiment

Eg| update Model & 0K (2) Help

For this example, select freql, freqg2, freq3, gainl, gain2, gain3 and mean_speed
for estimation. You do not need to estimate the parameters all at once. You can first
select all the parameters you are interested in, and then later select a subset to estimate.
By default, all the parameters are selected for estimation. To deselect the ones you do not
want to estimate, clear the Estimate check box for a parameter. For this example, only
estimate gainl, gain2, gain3 and mean_speed. Set their initial values 10, 100, 50, and
500, respectively, and then click OK. The Edit: Estimated Parameters dialog box looks

like

2 Parameter Estimation

2-10

Edit: Estimated Parameters
Parameters Tuned for all Experiments

fregl

|3 v| B % [T Estimate

freqd

> |3 -| B % [T Estimate
freg3

b |3 ~| B % [Estimate

»

w
—

m

b |10 ~| Bp % U Estimate

P |100 ~| B 3 [Estmate

P |50 ~| Bp X U Estimate

mean speed
» |5uu 1r| E;. b4 Estimate

E Select parameters

Parameters and Initial States Tuned per Experiment

Experiment: |Exp ~™ -

To learn how to specify initial values and upper and lower bounds of the parameters, see
“Specifying Initial Guesses and Upper/Lower Bounds” on page 2-12.

Select Parameters to Estimate for a Specific Experiment

To select the parameters to estimate in a specific experiment, first, select the experiment
for estimation as described in “Specify Experiments for Estimation” on page 2-24.

Then, you can use the Edit:Estimated Parameters dialog to select parameters to
estimate for that experiment. Select the experiment name from the Experiment: combo
box in the Parameters and Initial States Tuned per Experiment panel. Then click
Edit experiment to launch the experiment editor for the experiment you select.

Specify Parameters for Estimation

Alternatively, you can right click the experiment name in the Experiments list

and select Edit.... In the experiment editor, click the Select parameters button in
the Parameters panel. In the Select model variables dialog, you can select the
parameters you want to estimate in this experiment by checking the box next to it or
specifying an expression. For more information see “Select Parameters Using Select
Model Variables Dialog Box” on page 2-11.

Select Parameters Using Select Model Variables Dialog Box
The dialog box lists all the variables in the model workspace and the MATLAB

workspace that the model uses. You can select the parameters to estimate by clicking the
check box next to each variable.

Select model variables =
Filter bey wariable name P
w | Variable | Currentv.. Used By
] |freql 3 engine idle speed/Transfer Fcn -
[|freq2 3 engine idle speed/Transfer Fenl
] |freg? 3 engine idle speed/Transfer Fcn2 —
[|gainl 100 engine idle speed/Transfer Fcn 2
] |gain2 0 engine idle speed/Transfer Fenl 1
[|gain3 0 engine idle speed/Transfer Fcn :

b Specify expression indexing if neceszary (e.g., a(3) orsx)

Qﬁ"DK %Cancel @H&Ip

You can also enter parameters, separated by commas, in the Specify expression field of
the Select Model Variables dialog box.

w Specify expression indexing if necessary (e.g., a(3) orsx)

The parameters can be stored in one of the following:

* Simulink software parameter object

2-11

2 Parameter Estimation

2-12

Example: For a Simulink parameter object K, type k.value.

Structure

Example: For a structure S, type S.fieldname (where fieldname represents the name
of the field that contains the parameter).

Cell array

Example: Type C{1} to select the first element of the C cell array.
MATLAB array

Example: Type a(1:2) to select the first column of a 2-by-2 array called a.

You cannot use mathematical expressions such as a + b. Sometimes, models have
parameters that are not explicitly defined in the model itself. For example, a gain k could
be defined in the MATLAB workspace as k = a + b, where a and b are not defined in
the model but K is used. To add these independent parameters, such as Kk, to the Select
Parameters dialog box, see “Specify Independent Parameters to Estimate” on page

2-14.

Specifying Initial Guesses and Upper/Lower Bounds

After you select parameters, you can specify

Initial guess — The value the estimation uses to start the process.
Minimum — The smallest allowable parameter value. The default is —InT.

Maximum — The largest allowable parameter value. The default is +InF.

You can enter the initial value in the dialog box below the parameter name. You can
specify the minimum and maximum value fields by clicking the arrow . The default
minimum and maximum values are - Inf and +In¥, respectively, but you can select
any range you want.

gainl
¥ (10 | Oz » [Estimate
Minimums: | -Inf | Oz
Maximum: | Inf ¥ | O
Scale: |10 v | O

Specify Parameters for Estimation

If you believe a parameter lies within a finite range, it is best not to use the default
minimum and maximum values. Often, there are computational advantages in
specifying finite bounds. It can be very important to specify lower and upper bounds.
For example, if a parameter specifies the weight of a part, be sure to specify O as the
absolute lower bound if better information is unavailable.

Note: When you specify the minimum and maximum values for the parameters, it
does not affect your settings in the Parameters list under Data Browser pane. You
make these choices for each experiment.

+ Scale — Scale is used for normalization, in situations, for example, when parameters
are in different units.

Related Examples
. “Specify Independent Parameters to Estimate” on page 2-14
. “Specify Known Initial States” on page 2-18

More About

. “What Is an Experiment?” on page 2-3

2-13

2 Parameter Estimation

Specify Independent Parameters to Estimate

2-14

This example shows how to specify independent parameters, that do not appear explicitly
in the model, as estimation parameters.

Assume that the parameter Kint in the model srotutl is related to the parameters x
and y according to the relationship Kint=x+y. Also assume that the initial values of x
and y are 1 and -0.7 respectively. To estimate X and y instead of Kint, first define these
parameters in the model workspace. To do this:

1 At the MATLAB prompt, type

srotutl

This opens the srotutl model window.

2 Select View > Model Explorer from the srotutl window to open the Model
Explorer window.

3 In the Model Hierarchy tree, select srotutl > Model Workspace.

Specify Independent Parameters to Estimate

= Modl Exporer =
File Edit View Tools Add Help
B HOE (@D < 2=
Search: by Name » Name: G4, Search
Madel Hierarchy] | T= Contents of: .rkspace (only) Filter Contents Model Workspace
Workspace data
4 Simulink Root =
% Column View: |Data Objt = | Show Details 0 object(s’ bThd
£ Base Workspace Data source: |MDL-File -
4 srotutl MName Value DataType Min Max Dimensions
E Model Workspace
& codefor sratutt Model arguments {for referencing this model):
() Advice for srotutl
j Simulink Design Verifier results
% Configuration [Active)
q [m N 3 A
Revert Apply
Contents ‘ Search Results

Select Add > MATLAB Variable to add a new variable to the model workspace. A
new variable with a default name Var appears in the Name column.

Double-click Var to make it editable and change the variable name to X. Edit the

initial Value to 1.

Repeat steps 4 and 5 to add a variable y with an initial value of -0.7.

The Model Explorer window resembles the following figure.

2-15

2 Parameter Estimation

2-16

10

= Modl Expore oo s
File Edit View Tools Add Help
B3 H O = (@ = &
Search: by Name » Name: G4, Search
Madel Hierarchy EE] = Contents of: ...l Workspace= (only) Filter Contents Model Workspace
Workspace data
4 Simulink Root —
% Column View: |DataObjects = | ShowDetsis Z2object(s) J~
L Base Workspace Data source: | MDL-File -
4 srotutl* Mame Value DataType Min
E Model Workspace* H 1
& code for srotutt * o7 Model arguments {for referencing this model):
() Advice for srotutl ==)
j Simulink Design Verifier results
% Configuration [Active)
Contents | Search Results d L C

To add the Simulation Start function that defines the relationship between Kint
and the independent parameters X and y, select File > Model Properties in the
srotutl model window.

In the Model Properties window, click the Callbacks tab.

To enter a Simulation start function, select StartFen*, and type the name of a new
function. For example, srotutl_start in the Simulation start function panel.
Then, click OK.

Create a MATLAB file named srotutl_start. The content of the file defines
the relationship between the parameters in the model and the parameters in the
workspace. For this example, the content resembles the following:

wks = get_param(gcs, "ModelWorkspace®)
X = wks.evalin("x")

y = wks.evalin("y")

Kint = x+y;

Specify Independent Parameters to Estimate

Note: You must first use the get_param function to get the variables X and y from
the model workspace before you can use them to define Kint.

For x and y to appear in Parameter Estimation tool, the Select model variables dialog
box, X and y must be used by the model. For how to select parameters for estimation, see
“Specify Parameters for Estimation” on page 2-8.

Caution Avoid adding independent parameters together with their corresponding
dependent parameters to the lists of parameters to be estimated. Otherwise, the
estimation could give incorrect results. For example, when a parameter ¢ depends on the
parameters a and b avoid adding all three parameters to the list.

Related Examples

. “Specify Parameters for Estimation” on page 2-8

2-17

2 Parameter Estimation

Specify Known Initial States

In this section...

“When to Specify Initial States Versus Estimate Initial States” on page 2-18

“Specify Model Initial States” on page 2-18

When to Specify Initial States Versus Estimate Initial States

Sets of measured data are often collected at various times and under different initial
conditions. When you estimate model parameters using one data set and subsequently
run another estimation with a second data set, your parameter values may not match.

You can use the Parameter Estimation tool to estimate the initial conditions using
procedures that are similar to those you use to estimate parameters. You can then use
these initial condition estimates as a basis for estimating parameters for your Simulink
model.

Specify Model Initial States

After you select parameters for estimation, as described in “Specify Parameters for
Estimation” on page 2-8, you can specify initial conditions of states in your model. By
default, the estimation uses initial conditions specified in the Simulink model. If you
want to specify initial conditions other than the defaults, use the Initial States panel
in the experiment editor dialog. For this example, right click NewData and select Edit...
from the list to open the experiment editor. Then, click Select Initial States button.

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

{21 select Initial States

The Select Model States dialog for the engine_idle_speed model looks like

2-18

Specify Known Initial States

Filter by state narme 2
- State Current value
[l engine idle speed;/Transfer Fcn [00]
= engine idle speed/Transfer Fcnl [0a]
[E engine idle speed/Transfer Fcn2 [00]

J’ QK 83 Cancel @ Help

Click the check box next to the state you would like to modify. For example, if you select
engine_idle_speed/Transfer Fcn and enter the initial values -0.2 and O, the Initial
States panel now looks like

Initial States
Optionally define initial states for this experiment.

engine idle speed/Transfer Fcn
b [020] | B x
Select Initial States

Click Select Parameters in the Parameter Estimation tab. After you also select the
parameters as described in “Specify Parameters for Estimation” on page 2-8, the Edit:
Estimated Parameters dialog looks like the following figure.

2-19

2 Parameter Estimation

Edit: Estimated Parameters b4

Parameters Tuned for all Experiments
fregl
» |3 v| & % [Estimate
regd
> |3 v| 5 % [7 Estimate
freqgs
> |3 v| 5 % [7 Estimate

—

b |10 ~| B % U Estmate

b 100 | B} % U Estimate

b |50 ~| B % U Estmate

mean speed
b |500 | B} % U Estimate

E Select parameters

Parameters and Initial States Tuned per Experiment
Experiment: |Exp ™
Select experiment initial states for estimation.

engine idle speed/Transfer Fcn
b 1020 ~| B Estimate

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

Edit experiment

B Update Model &7 OK () Help

Related Examples
. “Specify Estimation Data” on page 2-4

. “Specify Parameters for Estimation” on page 2-8

2-20

Specify Known Initial States

More About

. “Experiment Editor” on page 2-22

2-21

2 Parameter Estimation

Experiment Editor

After creating an experiment as in “Create Experiment” on page 2-4, you can launch the
experiment editor by right-clicking on the experiment name and selecting Edit... from
the list. The experiment editor resembles the following figure.

Edit Experiment: Exp X

Outputs
Define measured output signals for this experiment.

engine idle speed/Sum:l [Engine Speed)
<1x1 Signal, 1 points= | Oz & b4

@ Select Meaured Output Signals

Inputs
Optionally define inputs signals for this experiment.
engine idle speed/BPAV:1 [BPAV]

<12 Signal> | B & X

m

@ Select Inputs

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

21 select inttial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment.

i Select Parameters il

The experiment editor has four panels. You can select output signals and import output
data in the Outputs panel. You can select input signals and import input data in the
Inputs panel. You can specify model initial states in the Initial States panel. And you
can specify parameters to estimate in the Parameters panel.

2-22

Experiment Editor

Related Examples
. “Specify Estimation Data” on page 2-4

. “Specify Parameters for Estimation” on page 2-8
. “Specify Known Initial States” on page 2-18

“Specify Experiments for Estimation” on page 2-24

More About

“What Is an Experiment?” on page 2-3

2-23

2 Parameter Estimation

Specify Experiments for Estimation

After specifying the parameters for estimation, select the experiment for the estimation
task. In the Parameter Estimation tool, on the Parameter Estimation tab, click Select
Experiments. In the Select Experiments dialog box, you can select the experiment

to use for estimation by clicking the check box corresponding to the experiment in the
Estimation column. For this example, there is only one experiment, NewData.

Select Experiments

Select experiments to include for estimation or validation

Estimation Validation Experiment
| [l |Nem-'Data

oo

o 0Kk (3) Hep

For more information, see “Specify Experiments for Validation” on page 2-48

Related Examples

. “Specify Estimation Data” on page 2-4

. “Specify Parameters for Estimation” on page 2-8

. “Specify Known Initial States” on page 2-18

. “Specify Experiments for Validation” on page 2-48

More About

. “What Is an Experiment?” on page 2-3

2-24

Progress Plots

Progress Plots

In this section...

“Types of Plots” on page 2-25
“Basic Steps for Creating Plots” on page 2-25

Types of Plots

The following types of plots are available for viewing and evaluating the estimation:

+ Cost function — Plot the cost function value as it changes during estimation.
* Measured and simulated — Plot empirical data against simulated data.
+ Parameter trajectory — Plot the parameter values as they change.

* Residuals — Plot the error between the experimental data and the simulated
output.

Basic Steps for Creating Plots

When you run estimation, Parameter Estimation tool automatically displays a parameter
trajectory plot that shows the change in the parameter values by iteration. However,

you can create other plots for viewing the progress of the estimation before you begin
estimating the parameters.

Note: An experiment must be created and selected for estimation before creating views.
To learn more, see “Create Experiment” on page 2-4 and “Specify Experiments for
Estimation” on page 2-24.

You can plot the measured data by clicking Add Plot on the Parameter Estimation
tab and selecting the experiment to use for estimation under Experiment Plots of the
drop down list. You can then add the simulated response on top of the measured data
plot by clicking Plot Model Response on the Parameter Estimation tab. Another way
of plotting the measured and simulated data is to right-click the experiment name, for
this example, NewData, and select Plot measured & simulated data from the list. The
plot looks like this:

2-25

2 Parameter Estimation

e |

| Iteration plot 1 ?’-| Iteration plot 2 #0| Experiment plot: NewData

Input-Output Data

Engine Speed
1000 : ghe °p :

Measured
Simulated | |

900 -
800

700

400 ' !

BPAV

Amplitude

0 50 100 150
Time (seconds)

You can see that the measured and simulated data do not match. You can edit the labels,
adjust the limits, change the units, and the font style of the plot in the Property Editor.
To launch the editor, right-click the experiment plot and select Properties from the list.

2-26

Progress Plots

4\ Property Editor: Input-Output Data

Labels | Limitsl Unitsl Stj.rlel Gptions|

el & s

Labels
Titles Input-Output Data
X-Label: |Time
Y-Label: |amplitude

| Close || Help |

You can also add a plot for the expected estimation cost by clicking Add Plot on the
Parameter Estimation tab and selecting Estimation Cost from the list. You can close
the message “There is no data for ExpCost, run the optimization to

update the plot”, by clicking the left arrow toggle to the left of the message. The plot
looks like this:

2-27

2 Parameter Estimation

| Tteration plot 1 | Tteration plot 2 |
®

ExpCost

1 -

0.9}

0.8}

Iteration

When you right-click the estimated parameters or expected cost plots, you can choose to
add the scaled values or save iteration data from the list.

<,

Grid
¥ Legend
Show scaled values

Save iteration data...

2-28

Progress Plots

Add the progress plots by clicking the Add Plot button on the Parameter Estimation
tab and selecting the plot in the list. Selecting Parameter Trajectory adds the
following plot to the tool.

Iteration plot 1

Value

6004

400

200t

100

EstimatedParams

—+—freql
—&— freq2
—— freq3

500 | —a&— gain1

gain2
—+— gain3
—&— mean_speed

lteration

Use the View tab of the Parameter Estimation tool to arrange the layout of the plots, so
that Experiment plot: NewData, Iteration plot 1, and Iteration plot 2 are
all visible.

2-29

2 Parameter Estimation

Data Browser Experiment plot: NewData 0

w Parameters | @ i o
E Speed
freql ~ 1000 T = T
- AT -+~ Maasured
freq2 | [T s e o o e Y —— Simulated
freq3 = 500 B
gainl ©
gain2 g 0 ! !
— a BPAV
w Experiments E 2 T T
R o A —
= 1 1
0 50 100 150
J Iteration plot2 0 J’ Iteration plotl 0 1
7 Ll | ® ExpCost EstimatedParams
1 5004
—+— freql
400 —a freq2
—=— freq3
o o 300 —&— gain1
g 0.5 g —— gain2
w Preview | 200 —+— gain3
J
Measured ocutput signal({s): - 100 mean_speed
- Engine Speed +
0 : : . ’ Y 08)
Measured input signal(s): 0 2 4 6 8 10 0 2 4 6 8 10
- BERV - Iteration Iteration

When you perform the estimation, all plots update automatically.

2-30

Estimation Options

Estimation Options

In this section...

“Access Estimation Options” on page 2-31

“General Options” on page 2-31

“Optimization Options” on page 2-33

“Specify Goodness of Fit Criteria (Cost Function)” on page 2-36

Access Estimation Options

In the Parameter Estimation tool, you can choose the cost function from the Cost
Function combo box.

Cost Function: Sum Sguared Error
You can access other estimation options by clicking the More Options button.

@ More Options...

Note: Parallel Options (see “Estimate Parameters Using Parallel Computing” on page
2-64).

General Options

You can set optimization progress and result options for your estimation task in the
Estimation Options dialog box.

2-31

2 Parameter Estimation

Estimation Options =

General Options | Optimization Options | Parallel Options

Progress Options

Show estimation progress window during estirnation
Create a parameter trajectory plot during estimation

Update plots during estimation

Result Opticns
Update model at end of estimation
Estimation results:

@ Overwrite estimation result with new estimated values

") Save estimated values as new estimation result

| ok || cancel |[Help |

Progress Options

Show estimation progress window during estimation option opens an estimation
progress window. The window displays iteration information, such as the cost function,
and the termination information, such as whether the optimization converged.

Create a parameter trajectory plot during estimation option creates a plot that
shows how the parameter values change by iteration.

Update plots during optimization option updates the progress plots such a cost
function and parameter trajectory plot and estimation plots during estimation.

Result Options

Update model at the end of estimation option updates the parameter values in the
Simulink model after the estimation terminates.

2-32

Estimation Options

Overwrite estimation result with new estimated values option overwrites any
estimation results or experiments with the new estimated values.

Save estimated values as new estimation result option creates a new variable that
contains the estimated parameter values.

Optimization Options

* “Supported Estimation Methods” on page 2-33
* “Optimization Termination Options” on page 2-35

+ “Additional Optimization Options” on page 2-35

Estimation Opti

General Options| Optimization Options | Parallel Options|

Optimization method

Method: iNonIinearIeastsquares vi Algorithm: iActive—Set vi
Optimization options

Parameter tolerance: |0.001 Function tolerance: |0.001

Maximum iterations: | 100

[7] Use robust cost

Display level: Iteration)

Restarts: 0

[oK H Cancel]| Help !

Supported Estimation Methods

Both the Method and Algorithm options define the optimization method.

Optimization method
Method: | Monlinear least squares -7 Algorithm: | Active-Set -7

2-33

2 Parameter Estimation

2-34

For the Method option

+ Nonlinear least squares (default) — Uses the Optimization Toolbox™ nonlinear
least squares function Isgnonlin.

+ Gradient descent — Uses the Optimization Toolbox function fmincon.

+ Pattern search — Uses the pattern search method patternsearch. This option
requires Global Optimization Toolbox.

+ Simplex search — Uses the Optimization Toolbox function fminsearch, which is
a direct search method. Simplex search is most useful for simple problems and is
sometimes faster than fmincon for models that contain discontinuities.

For the Nonlinear least squares and Gradient descent estimation methods

Method

Algorithm Option

Learn More

Nonlinear least |-
squares

Trust-Region-Reflective
(default)

Levenberg-Marquardt

In the Optimization
Toolbox documentation,
see:

* “Trust-Region-
Reflective Least
Squares Algorithm”

+ “Levenberg-
Marquardt Method”

Gradient descent

Trust-Region-Reflective
(default)

Interior-Point
Active-Set

Sequential Quadratic
Programming

In the Optimization
Toolbox documentation,
see:

* “fmincon Active Set
Algorithm”

+ “fmincon Interior
Point Algorithm”

* “fmincon Trust
Region Reflective
Algorithm”

* “fmincon SQP
Algorithm”

Estimation Options

Optimization Termination Options

Optimization options

Parameter tolerance: | 0.001 Function tolerance: | 0.001

Maximum iterations: |100

Use robust cost

Several options define when the optimization terminates:

Parameter tolerance — Optimization terminates when successive parameter values
change by less than this number.

Maximum iterations — Maximum number of iterations allowed. The optimization
terminates when the number of iterations exceeds this value.

Function tolerance — Optimization terminates when successive function values are
less than this value.

Use robust cost — Make the optimizer use a robust cost function instead of the
default least-squares cost. This is useful if the experimental data has many outliers,
or if your data is noisy.

By varying these parameters, you can force the optimization to continue searching for a
solution or to continue searching for a more accurate solution.

Additional Optimization Options

Display level — Specify the form of the output that appears in the MATLAB
Command Window. The options are:

+ Iteration — Display information after each iteration.
* None — Turn off all output.

Notify — Display output only if the function does not converge.
* Final — Display only the final output.

Refer to the Optimization Toolbox documentation for more information on what type
of iterative output each method displays.

Display lewel: Tteration -

2-35

2 Parameter Estimation

2-36

* Restarts — Indicate the number of times you want to restart, to automatically
restart the optimization. In some optimizations, the Hessian may become ill-
conditioned and the optimization does not converge. In these cases, it is sometimes
useful to restart the optimization after it stops, using the endpoint of the previous
optimization as the starting point for the next one.

Specify Goodness of Fit Criteria (Cost Function)

The cost function is a function that estimation methods minimize. You can specify
the cost function by selecting from the list in the Cost Function combo box on the
Parameter Estimation tab.

Cost Function: Sum Squared Error

The default cost function is Sum Squared Error (sum of squared errors), which uses
a least-squares approach. You can also use Sum-Absolute Error, the sum of absolute
errors.

You can select the robust cost option from the Optimization Options tab of the
Estimation Options editor. To launch the dialog box click More Options... on the
Parameter Estimation tool. Use robust cost option makes the optimizer use a robust
cost function instead of the default least-squares cost. This is useful if the experimental
data has many outliers, or if your data is noisy.

Progress Display Options

Progress Display Options

You can specify the display options in the Parameter Estimation tool. On the Parameter
Estimation tab, in the Estimate section, click the arrow , and select Open Estimation

Report.
u Estirnation Progress Report EI@
'ij There is no progress data to display. Run an optimization to generate progress informaticn. |
Iteration | F-count f(x)
[Save Iteratiun...] [Display Options...] [Estimate]

The report displays the iteration number (I teration), the number of times the objective
function is calculated (F-count), and cost function value (F(X)) by default. You can
change by clicking Display Options.

2-37

2 Parameter Estimation

P)

n Select columns to display EI@

Columns
teration
F-count
(x)

Clear a check box to remove it from the display table. To learn more about the display
table, see “Iterative Display” in the Optimization Toolbox documentation.

2-38

Run Estimation

Run Estimation

Before you begin estimating the parameters, you must have configured the estimation
data, selected parameters, and specified estimation options, as described in “Specify
Estimation Data” on page 2-4, “Specify Parameters for Estimation” on page 2-8, and
“Estimation Options” on page 2-31, respectively.

To start the estimation, in the Parameter Estimation tool, on the Parameter
Estimation tab, click the Estimate button .

>

Estimate

w

When starting the estimation, a progress window displays. At the end of the estimation,
the Estimation Progress Report window should resemble the following:

u Estimation Progress Report EI@
Iteration | F-count MNewData
(Minirize)
0 13 367.8609
1 25 20.5752
s 39 87107
3 52 6.5814
4 85 5.4781
Optimization started 14-May-2014 12:27:22 -~
Estimation converged, 14-May-2014 12:38:37
Estimated experiment values written to the workspace S

[Savelteratiun...] [DisplayOptiuns...] [Estimate]

The estimation results are saved in EstimatedParams in the Results list on the Browse
Data pane.

2-39

2 Parameter Estimation

Right-click EstimatedParams and select Open... from the menu. The window looks like
the following figure.

View Result : EstimatedParams X

Estimation result(s):

freql =3

freqd =3

freq3 =3

gainl = 12413

gaind = 23.841

gain3 = 20.775
mean_speed = 730,88

Parameters estimated using experiments:
MewData, cost = 64761

Solver cutput:
Cost: 64761
ExitFlag: 1
FCount: 53
Date: 23-May-2014 08:53
Solver termination message:

Local minimum found.

Optimization completed because the size of the gradient is less than
the selected value of the function tolerance,

Stopping criteria details:

Optimization completed: The first-order optimality measure, 2.46137%-11,
is less than options. TolFun = 1.000000e-03.

Optimization Metric Options
relative first-order optimality = 246e-11 TolFun = 1e-03 (selected)

1 Use as initial guess E Update Model Q? oK

The EstimatedParams includes the values of the parameters, the cost function value,
and information about the stopping criteria for the estimation. The optimization stops
because the successive function values are less than the specified value 1e-3.

The Estimation Progress Report includes the change in the cost function in the
column titled NewData(Minimize). To see a plot of the change in the cost function

2-40

Run Estimation

during estimation, add the cost function plot by clicking the Add Plot button on the
Parameter Estimation tab and selecting Estimation Cost from the list. After the
estimation process completes, the cost function minimization plot appears as shown in
the following figure.

Experiment plot: MewData Iteration plot 1 Iteration plet 2

ExpCost
400

I
350
300
250
[1k]
= 200
=
150

100

50

lteration

Usually, a lower cost function value indicates a successful estimation, meaning that the

experimental data matches the model simulation with the estimated parameters. If the

optimization went well, you should see your cost function converge on a minimum value.
The lower the cost, the more successful is the estimation.

For information on types of problems you may encounter using optimization solvers, see
the following topics in the Optimization Toolbox documentation:

2-41

2 Parameter Estimation

* “When the Solver Fails ”
* “When the Solver Might Have Succeeded ”
+ “When the Solver Succeeds ”

The estimated parameters graph shows the change in the estimated value of the
parameters by iteration.

Experiment plot: MewData | Iteration plot 1 | Iteration plot 2 |

EstimatedParams

800
—+— engine_idle_speed/Transfer Fen{NewData)
700 | —&— gaini1{NewData)
—— gain2(NewData)
—&— gain3(MewData)
600 | ——— mean_speed NewData)
500+
o 400
=
S
300
200
100 1 1 1 1 1 1 1 1 1 I
0 1 2 3 4 5 6 T 8 9 10

lteration

The values of the parameters are recorded with the estimated values.

2-42

Run Estimation

Edit: Estimated Parameters ...
Parameters Tuned for all Experiments

freal
> |3 v| B % [Estimate
req?
3 ~| B % P Estmate

regs
3 v| Hp 3 M Estimate
gainl
174,130824637989 "| Hp x [Estimate

—

2

—

-

4

gain?
23.8409380638005 v| H » Estimate

2

gain3
3 |20.??49205842?08 v| B » Estimate

mean speed
b |730.378398906614 ~| Hp ¢ U Estimate

E Select parameters

The values of the estimated parameters are also updated in the MATLAB workspace.

You can also examine the measured versus simulated data plot to see how closely

the simulated data matches the measured estimation data. The next figure shows

the measured versus simulated data plot generated by running the estimation of the
engine_idle_speed model (for engine_idle_speed model, see “Create Experiment”
on page 2-4). Now, the simulated values match the measured output signal better.

2-43

2 Parameter Estimation

2-44

|- Experiment plot: MewData = | Iteration plotl = | Iteration plot 2 |

Amplitude

1000

900

800

700

600

500

1.5

Input-Output Data

Engine Speed
I I Measured
i I Simulated | |
o
II
L | J
T || Mald. L] b add
I i)
| | ¢ ket 1o I i
1 1
BPAV

Related Examples

50

Time (seconds)

“Specify Estimation Data” on page 2-4

“Specify Parameters for Estimation” on page 2-8

“Specify Known Initial States” on page 2-18

100

“Specify Experiments for Estimation” on page 2-24

“Progress Plots” on page 2-25

“Estimation Options” on page 2-31

150

Run Estimation

More About

. “What Is an Experiment?” on page 2-3
. “Model Validation” on page 2-46

2-45

2 Parameter Estimation

Model Validation

2-46

After you complete estimating parameters as described in “Run Estimation” on page
2-39, validate the results against another set of data.

To validate a model using the Parameter Estimation tool

1 Add a new experiment in the Experiments list in the Data Browser pane.

2 Import the validation data set to the experiment you want to use for validation. To
do this right-click the experiment name and select Edit....

Select the experiment for validation.
Select the results to use in the validation.

Select the plots to display at the end of validation.

o U AW

Run validation and compare the measured validation data against the model output
simulated with the estimated parameter to see if they match.

You can run validation after the estimation is complete. Validations can use other
validation data sets for comparison with the model response. You must set up all
estimation plots before an estimation, and you can watch the views update in real time.
Validations appear after you have completed an estimation and do not update.

You can validate data by comparing measured and simulated data for your estimation
and validation experiments.

Also, it 1s useful to compare residuals of measured and simulated data in the same way.

Related Examples

. “Load and Import Validation Data” on page 2-47

. “Specify Experiments for Validation” on page 2-48
. “Select Results for Validation” on page 2-50

. “Compare Measured and Simulated Responses” on page 2-54

More About

. “What Is an Experiment?” on page 2-3

Load and Import Validation Data

Load and Import Validation Data

To validate the estimated parameters computed in “Run Estimation” on page 2-39,
import the data into the experiment you want to use for validation in the Parameter
Estimation tool.

At the MATLAB prompt, load the validation data into the MATLAB workspace by typing

load iodataval

Import this data into the validation experiment in the Parameter Estimation tool.

1

w

Add a new experiment in the Experiments list in the Data Browser pane. You can
rename the experiment by right-clicking and selecting Rename from the list.

Right click the experiment name and select Edit...
Type [time, 1odataval (:,1)] in the dialog box in the Inputs panel.
Type [time, iodataval (:,2)] in the dialog box in the Qutputs panel.

Related Examples

“Import Data” on page 1-6
“Specify Experiments for Validation” on page 2-48
“Select Results for Validation” on page 2-50

“Compare Measured and Simulated Responses” on page 2-54

More About

“Model Validation” on page 2-46

2-47

2 Parameter Estimation

Specify Experiments for Validation

After importing data into an experiment that you want to use for validation, select the
experiment for the validation task. In the Parameter Estimation tool, on the Validation
tab, click Select Experiments.

PARAKMETER ESTIMATICN WAL DA TICR EXPERIMEMT PLOT
@' Plot Measured & Simulated Data D
[y Select Zelect Results M Plat Reziduals Walidate

Experiment Experiments to Yalidate -
EXFPERIMENTS | RESULTS | PLOT QPTIONS | WAL DATE

When you create an experiment, it is by default selected for estimation. To select an
experiment for validation in the Select Experiments dialog box, deselect the check box
under the Estimation column and select the check box under the Validation column for
the corresponding experiment.

Select experiments to include for estimation or validation

Estimation Validation Experiment

[l MewData
ValidatiocnData

ar &

& 0K () Hep
Related Examples
. “Load and Import Validation Data” on page 2-47
. “Select Results for Validation” on page 2-50
. “Compare Measured and Simulated Responses” on page 2-54

2-48

Specify Experiments for Validation

More About
. “Model Validation” on page 2-46

2-49

2 Parameter Estimation

Select Results for Validation

After you run the estimation as described in “Run Estimation” on page 2-39, the results
are recorded in EstimatedParams by default. After you import the validation data,

as described in “Load and Import Validation Data” on page 2-47, you must make sure

the validation uses the tuned parameter values in EstimatedParams in validation.
Validation Tab lets you do this. In the Parameter Estimation tool, on the Validation tab,
click Select Results to Validate.

PARAKMETER ESTIMATICN WAL DA TICR EXPERIMEMNT PLOT
@' Plot Measured & Simulated Data D
[y Select Select Results M Plat Reziduals Walidate

Experiment Experiments 1o Yalidate -
EXFERIMENTS | RESULTS | PLOT OPTIOMNS | WAL DATE

In Select Results dialog box, validate the estimated parameters by selecting
EstimatedParams and deselecting Use current parameter values.

Select results to include in validation

Results

EstirnatedParams

o 0k (3) Hep

Related Examples
. “Load and Import Validation Data” on page 2-47
. “Specify Experiments for Validation” on page 2-48

2-50

Select Results for Validation

. “Compare Measured and Simulated Responses” on page 2-54

More About
. “Model Validation” on page 2-46

2-51

2 Parameter Estimation

Select Plots and Run Validation

Parameter Estimation tool displays the measured and simulated responses and the
residuals plot at the end of validation. Select the plots to display by checking the
corresponding box on the Validation Tab.

Plot Meazsured & Simulated Data

Flot Residuals

PLOT OPTIOMS

To perform the validation, on the Validation tab, click Validate. The Validation
Progress Report shows the status of the validation.

[4\] Validation Progress Repart = =] =]

Ezperiment Marme Status
“alidationExp Completed
Walidate

2-52

Select Plots and Run Validation

Related Examples

. “Load and Import Validation Data” on page 2-47

. “Specify Experiments for Validation” on page 2-48
. “Select Results for Validation” on page 2-50

. “Compare Measured and Simulated Responses” on page 2-54

More About

. “What Is an Experiment?” on page 2-3
. “Model Validation” on page 2-46

2-53

2 Parameter Estimation

Compare Measured and Simulated Responses

Compare the measured and simulated responses using the experiment plot and residuals
plot. To create these plots, select the corresponding check boxes on the Validation Tab
of the Parameter Estimation tool before you start validation.

Plot Meazsured & Simulated Data

Plot Residuals

PLOT OPTIOMS

Experiment Plot

The Parameter Estimation tool by default displays the experiment plot for each
experiment selected for validation. Each experiment plot shows the measured data,
as well as data from simulation using each set of results selected. For example, the
following figure shows the experiment plot for the Val idationExp data.

2-54

Compare Measured and Simulated Responses

|. Experiment plot: MewData < | Experiment plot: ValidationExp |

Experiment plot

1000 . Engine Speed .
M d
900 - S::Lj:;:d with Tuned Parameters rmm 4
|
| || I |‘
800 | | I “! | I ““l]
| | || || ||| ||I|]H H I“hllhu I [W)
- oS
700 | J mﬁ ! L
o l| |I I Jii HJ'IUHHH'II lnill !ii .
600 - i
©
E 500 L I
3 BPAV
E 2 T T

0 50 100 150
Time (seconds)

Residuals Plot

After comparing the measured and simulated responses for an estimation, examine the
residuals. The residuals plot shows the difference between the simulated response and
measured data. To indicate a good fit between the simulated output and measured data,

the residuals should:

+ Lie within a small percent of the maximum output variation.

* Not display any systematic patterns.

For example, you can see from the following figure that the residuals for
Val idationExp data satisfy both criteria.

2-55

2 Parameter Estimation

| Experiment plot: NewData % | Experiment plot: ValidationExp 0| Residual plot: ValidationExp 7 |

Residuals for ValidationExp
Engine Speed

100 T

Residuals with Tuned Parameters |

80 -

40

20

Amplitude

=20+

-60 |

-80 I I
50 100 150

Time (seconds)

(=]

Related Examples

. “Load and Import Validation Data” on page 2-47

. “Specify Experiments for Validation” on page 2-48
. “Select Results for Validation” on page 2-50

More About

. “Model Validation” on page 2-46

2-56

Accelerating Model Simulations During Estimation

Accelerating Model Simulations During Estimation

In this section...

“About Accelerating Model Simulations During Estimation” on page 2-57
“Limitations” on page 2-57

“Setting the Accelerator Mode for Parameter Estimation” on page 2-57

About Accelerating Model Simulations During Estimation

You can accelerate the parameter estimation computations by changing the simulation
mode of your Simulink model. Simulink Design Optimization software supports Normal
and Accelerator simulation modes. For more information about these modes, see “How
Acceleration Modes Work” in the Simulink documentation.

The default simulation mode is Normal. In this mode, Simulink software uses
interpreted code, rather than compiled C code during simulations.

In the Accelerator mode, Simulink Design Optimization software runs simulations

during estimation with compiled C code. Using compiled C code speeds up the
simulations and reduces the time to estimate parameters.

Limitations
You cannot use the Accelerator mode if your model contains algebraic loops. If the

model contains MATLAB function blocks, you must either remove them or replace them
with “Fen” blocks.

Setting the Accelerator Mode for Parameter Estimation

To set the simulation mode to Accelerator, open the Simulink model window and
perform one of the following actions:

+ Select Simulation > Mode > Accelerator.

* Choose Accelerator from the drop-down list as shown in the next figure.

2-57

2 Parameter Estimation

}i engine_idle_speed EI L=

File Edit View Display Diagram Simulation Analysis Code Tools Help
1]~ = o =
@:'@ HE = G > > &) ~ 150

engine_idle_speed
Rapid Accelerator

® engine_idle_speed Software-in-the-Loop (SIL)
Processor-in-the-Loop (PIL)
External

Idle Speed Engine Model

Tip To obtain the maximum performance from the Accelerator mode, close all Scope
blocks in your model.

2-58

Speedup Using Parallel Computing

Speedup Using Parallel Computing

In this section...

“When to Use Parallel Computing for Parameter Estimation” on page 2-59

“How Parallel Computing Speeds Up Estimation” on page 2-59

When to Use Parallel Computing for Parameter Estimation

You can use Simulink Design Optimization software with Parallel Computing Toolbox™
software to speed up parameter estimation of Simulink models. Using parallel computing
may reduce the estimation time in the following cases:

* The model contains a large number parameters to estimate, and the estimation
method is specified as either Nonlinear least squares or Gradient descent.

+ The Pattern search method is selected as the estimation method.

* The model is complex and takes a long time to simulate.

When you use parallel computing, the software distributes independent simulations

to run them in parallel on multiple MATLAB sessions, also known as workers. The

time required to simulate the model dominates the total estimation time. Therefore,
distributing the simulations significantly reduces the estimation time.

For information on how the software distributes the simulations and the expected
speedup, see “How Parallel Computing Speeds Up Estimation” on page 2-59.

For information on configuring your system and using parallel computing, see “How to

Use Parallel Computing” on page 2-63.

How Parallel Computing Speeds Up Estimation

You can enable parallel computing with the Nonlinear least squares, Gradient
descent and Pattern search estimation methods. The following sections describes
the potential speedup using parallel computing for estimation:

+ “Parallel Computing with Nonlinear least squares and Gradient descent Methods” on
page 2-60
+ “Parallel Computing with the Pattern search Method” on page 2-61

2-59

2 Parameter Estimation

2-60

Parallel Computing with Nonlinear least squares and Gradient descent Methods

When you select Gradient descent as the estimation method, the model is simulated
during the following computations:
* Objective value computation — One simulation per iteration

* Objective gradient computations — Two simulations for every tuned parameter per
iteration

* Line search computations — Multiple simulations per iteration

The total time, Ttotal, taken per iteration to perform these simulations is given by the
following equation:

Ttotal =T +(Npx2XxT)+(NisxT) =T x(1 +(2x Np) + Nis)

where T is the time taken to simulate the model and is assumed to be equal for all
simulations, Np is the number of parameters to estimate, and Nis is the number of line

searches. Nis is difficult to estimate and you generally assume it to be equal to one, two,
or three.

When you use parallel computing, the software distributes the simulations required
for objective gradient computations. The simulation time taken per iteration when the

gradient computations are performed in parallel, TtotalP , is approximately given by the
following equation:

w w

Thotatp = T+(ceil(%jx2 XT) +(Nisx T) = T><(1+2xceil(%)+ Nis)

where Nw is the number of MATLAB workers.

Note: The equation does not include the time overheads associated with configuring the
system for parallel computing and loading Simulink software on the remote MATLAB
workers.

The expected reduction of the total estimation time is given by the following equation:

Speedup Using Parallel Computing

1+2><ceil(Np)+ Nis
N,

TtotalP _ w

Ttotal 1+(2><Np)+le

For example, for a model with N,=3, N,=4, and Nys=3, the expected reduction of the total

1+2xceil(i}+3

estimation time equals =0.6.
1+@2x3)+3

Parallel Computing with the Pattern search Method

The Pattern search method uses search and poll sets to create and compute a set of
candidate solutions at each estimation iteration.

The total time, Ttotal, taken per iteration to perform these simulations, is given by the
following equation:

Ttotal = (T'x NpXx Nss)+ (T x Npx Nps) = T X Np x(Nss + Nps)

where T is the time taken to simulate the model and is assumed to be equal for all
simulations, Np is the number of parameters to estimate, Nss is a factor for the search

set size, and Nps is a factor for the poll set size. Nss and Nps are typically proportional
to Np .

When you use parallel computing, Simulink Design Optimization software distributes
the simulations required for the search and poll set computations, which are evaluated in
separate “parfor” loops. The simulation time taken per iteration when the search and poll

sets are computed in parallel, TtotalP , is given by the following equation:

TtotalP = (T x ceil(pr&)) +(T x ceil(Np x Nps))
Nw Nw

. Nss . Nps
=T x(ceil(Npx —=) + ceil(Np x)
"7 Nw Y

w

where Nw is the number of MATLAB workers.

2-61

2 Parameter Estimation

2-62

Note: The equation does not include the time overheads associated with configuring the
system for parallel computing and loading Simulink software on the remote MATLAB
workers.

The expected speed up for the total estimation time is given by the following equation:

ceil(Npx %) + ceil(Npx]]\\’7”8

w

)

TtotalP _
Ttotal Npx(Nss+ Nps)

For example, for a model with Np=3, N,=4, Ngs=15, and N,s=2, the expected speedup

ceil3x12) 1 ceil(3 % 2)
equals 4 4 _0.27.
3x(15+2)

Using the Pattern search method with parallel computing may not speed up the
estimation time. When you do not use parallel computing, the method stops searching
for a candidate solution at each iteration as soon as it finds a solution better than the
current solution. When you use parallel computing, the candidate solution search is more
comprehensive. Although the number of iterations may be larger, the estimation without
using parallel computing may be faster.

Related Examples
. “How to Use Parallel Computing” on page 2-63

How to Use Parallel Computing

How to Use Parallel Computing

In this section...

“Configure Your System for Parallel Computing” on page 2-63
“Model Dependencies” on page 2-63
“Estimate Parameters Using Parallel Computing” on page 2-64

“Estimate Parameters Using Parallel Computing (Code)” on page 2-67

“Troubleshooting” on page 2-68

Configure Your System for Parallel Computing

You can speed up parameter estimation using parallel computing on multicore processors
or multiprocessor networks. You can use parallel computing with the parameter
estimation GUI and sdo.optimize. When you estimate model parameters using
parallel computing, the software uses the available parallel pool. If no parallel pool

is available and Automatically create a parallel pool is selected in your Parallel
Computing Toolbox preferences, then the software starts a parallel pool using the
settings in those preferences.

When you begin estimation, the software automatically detects model dependencies and
temporarily adds them to the parallel pool workers. However, to ensure that workers
are able to access the undetected file and path dependencies, create a cluster profile
that specifies the same. The parallel pool used for estimation must be associated with
this cluster profile. For information regarding creating a cluster profile, see “Create and
Modify Cluster Profiles” in the Parallel Computing Toolbox documentation.

To manually open a parallel pool that uses a specific cluster profile, use:
parpool (MyProfile);

MyProfile is the name of a cluster profile.

Model Dependencies

Model dependencies are any referenced models, data (model variables etc.), S-functions,
and additional files necessary to run the model. Before starting the optimization, you
must verify that all the remote workers can access the model dependencies. Otherwise,
you may get unexpected results.

2-63

2 Parameter Estimation

2-64

Making File Dependencies Accessible to Remote Workers

When you use parallel computing, the Simulink Design Optimization software helps you
identify model path dependencies. To do so, the software uses the Simulink Manifest
Tools. However, the dependency analysis may not find all the files required by your
model. For example, folders containing code for your model or block callbacks may

not be detected. To learn more, see “Scope of Dependency Analysis” in the Simulink
documentation.

If your model has undetected file dependencies, then specify them in the Files and
Folders section of the cluster profile.

If your model has path dependencies that are undetected or inaccessible by the remote
workers, then add them to the list of model path dependencies. For more information,
see:

+ “Estimate Parameters Using Parallel Computing” on page 2-64

+ “Estimate Parameters Using Parallel Computing (Code)” on page 2-67
Making Data Dependencies Accessible to Remote Workers

You can check whether a model has access to all its data dependencies, such as variables
required for model initialization. On your local machine, complete the following steps:

Close the model, and clear the MATLAB workspace.

2 Load the model. Verify that only the specified dependencies are accessible to the
model.

3 Simulate the model. If the model errors, a dependency is missing. For example, if a
simulation error occurs because a variable is not defined, you can correct the problem
in one of the following ways:

+ Add the variable to the model workspace.

Create a MATLAB script that creates the variable, and add the file to the list of
dependencies. Modify the PreLoadFcn callback of the model to add a call to the
MATLAB script.

Estimate Parameters Using Parallel Computing

To estimate model parameters using parallel computing in the Parameter Estimation
tool:

How to Use Parallel Computing

Ensure that the software can access parallel pool workers that use the appropriate
cluster profile.

For more information, see “Configure Your System for Parallel Computing” on page
2-63.

Open the Parameter Estimation tool for the Simulink model.

Configure the estimation data, estimation parameters and states, and, optionally,
estimation settings.

For more information, see “Specify Estimation Data” on page 2-4, “Specify
Parameters for Estimation” on page 2-8, and “Optimization Options” on page 2-33.

In the Parameter Estimation tool, on the Parameter Estimation tab, click More
Options to launch the Estimation Options dialog. Select the Parallel Options tab.

| General Optionsl Optimization Options| Parallel Opti0ﬂ5|

[] Use the parallel pool during optimization

Meodel path dependencies

Mo model path dependencies,

Add path dependency... Sync path dependencies from model

| ok |[TGancel]| Help |

Select the Use the parallel pool during optimization check box.

This option checks for model path dependencies in your Simulink model and displays
the path dependencies in the Model path dependencies list box.

Note: The automatic path dependencies check may not detect all the path
dependencies in your model.

2-65

2 Parameter Estimation

For more information, see “Model Dependencies” on page 2-63.

6 (Optional) Add the path dependencies that the automatic check does not detect.

Specify the paths in the Model path dependencies list box. You can specify the
paths separated either with a semicolons or on separate lines.

Estimation Opti
| General Optionsl Optimization Options| Parallel Optioﬂsl

Use the parallel pool during optimization

Model path dependencies

Ch\myproject; Chmyproject2
C:\estim_common_dependencies|

’ Add path dependency...] ’ Sync path dependencies from maodel

| ok || Cancel || Help |

Alternatively, click Add path dependency to open a dialog box, and select the
folder to add.

7 (Optional) In the Model path dependencies list box, update the paths on local
drives to make them accessible to remote workers. For example, change C:\ to \\\
\hostname\\C$H\\.

8 (Optional) If you modify the Simulink model such that it introduces a new path
dependency, then resync the path dependencies. Click Sync path dependencies
from model in the Parallel Options tab to rerun the automatic dependency check
for your model.

This action updates the Model path dependencies list box with any new path
dependency found in the model.

9 Click OK.

2-66

How to Use Parallel Computing

10 In the Parameter Estimation tab, click Estimate to estimate the model

parameters using parallel computing.

For information on troubleshooting problems related to estimation using parallel
computing, see “Troubleshooting” on page 2-68.

Estimate Parameters Using Parallel Computing (Code)

To use parallel computing for parameter estimation at the command line:

1

w

Ensure that the software can access parallel pool workers that use the appropriate
cluster profile.

For more information, see “Configure Your System for Parallel Computing” on page
2-63.

Open the model.

Configure an estimation experiment.

Enable parallel computing using an optimization option set, opt.

opt = sdo.OptimizeOptions;

opt_UseParallel = "always”;

Find the model path dependencies.

dirs = sdo.getModelDependencies(modelname)

Note: sdo.getModelDependencies may not detect all the path dependencies in
your model.

For more information, see “Model Dependencies” on page 2-63.

(Optional) Modify dirs to include the path dependencies that
sdo.getModelDependencies does not detect.

dirs = vertcat(dirs, "\\hostname\C$\matlab\work")

(Optional) Modify dirs to make paths on local drives accessible to remote workers.

dirs = regexprep(dirs,“C:/", "\\\\hostname\\C$\\ ")
Add the path dependencies for optimization.

opt.ParallelPathDependencies = dirs;

2-67

2 Parameter Estimation

2-68

9 Run the optimization.

[pOpt,opt_info] = sdo.optimize(opt_fcn,param,opt);

For information on troubleshooting problems related to estimation using parallel
computing, see “Troubleshooting” on page 2-68.

Troubleshooting

“Why are the estimation results with and without using parallel computing different?”
on page 2-68

“Why do I not see the estimation speedup I expected using parallel computing?” on
page 2-68

“Why does the estimation using parallel computing not make any progress?”’ on page
2-69

“Why do I receive an error "Cannot save model

tpe5468ch55_910c_4275_94ef 305e2eeeeef4"?” on page 2-69

“Why does the estimation using parallel computing not stop when I click Stop?” on
page 2-69

Why are the estimation results with and without using parallel computing different?

Different numerical precision on the client and worker machines can produce
marginally different simulation results. Thus, the optimization method can take a
completely different solution path and produce a different result.

The client and worker machines must have models in identical states. For example,
you must verify that the model running on the client uses exactly the same variable
values as the workers. You must also verify that the client and workers are accessing
model dependencies in identical states.

When you use parallel computing with the Pattern search method, the search is
more comprehensive and can result in a different solution.

To learn more, see “Parallel Computing with the Pattern search Method” on page
2-61.

Why do I not see the estimation speedup | expected using parallel computing?

When you estimate a small number of model parameters or when the model does
not take long to simulate, you might not see a speedup in the estimation time. In

How to Use Parallel Computing

such cases, the overhead associated with creating and distributing the parallel tasks
outweighs the benefits of running the estimation in parallel.

+ Using the Pattern search method with parallel computing might not speed up the
optimization time. Without parallel computing, the method stops the search at each
iteration as soon as it finds a solution better than the current solution. The candidate
solution search is more comprehensive when you use parallel computing. Although
the number of iterations might be larger, the optimization without using parallel
computing might be faster.

To learn more about the expected speedup, see “Parallel Computing with the Pattern
search Method” on page 2-61.

Why does the estimation using parallel computing not make any progress?

In some cases, the gradient computations on the remote worker machines may silently
error out when you use parallel computing. In such cases, the Estimation progress
table shows that the £(X) values do not change, and the optimization terminates after
two iterations.

To troubleshoot the problem:

1 Run the optimization for a few iterations without parallel computing to see if the
optimization progresses.

2 Check whether the remote workers have access to all model dependencies. Model
dependencies include data variables and files required by the model to run.

To learn more, see “Model Dependencies” on page 2-63.
Why do | receive an error "Cannot save model tpe5468c55_910c_4275_94ef_305e2eeeeef4"?

When you specify the Gradient type as Refined, the software may error out when it
attempts to save a temporary model to a nonwriteable folder. To clear this error, change
the Gradient type to Basic. To learn more, see “Additional Optimization Options” on
page 2-35.

Why does the estimation using parallel computing not stop when I click Stop?

When you use parallel computing, the software must wait until the current optimization
iteration completes before it notifies the workers to stop the optimization. The
optimization does not terminate immediately when you click Stop, and, instead, appears
to continue running.

2-69

2 Parameter Estimation

See Also

sdo.OptimizeOptions | parpool | sdo.getModelDependencies | sdo.optimize

More About
. “Speedup Using Parallel Computing” on page 2-59

2-70

Estimating Initial Conditions for Blocks with External Initial Conditions

Estimating Initial Conditions for Blocks with External Initial
Conditions

When an integrator block uses an initial-condition port, which you specify by an IC block,
you cannot estimate the initial conditions (ICs) of the integrator using Simulink Design
Optimization software. Estimation is not possible because external ICs have priority over
the ICs of a specific block to maintain the integrity of the model.

To tune the ICs of an integrator block with external ICs, you must modify the model to
make the external signal into a tunable parameter. For example, you can set the IC block
that feeds into the integrator to be a tunable variable and estimate it.

2-71

2 Parameter Estimation

Estimation Sessions

2-72

In this section...

“Structure of an Estimation Session” on page 2-72
“Save Parameter Estimation Tool Sessions” on page 2-72

“Load Parameter Estimation Tool Sessions” on page 2-73

“Load Legacy Projects” on page 2-73

Structure of an Estimation Session

The Parameter Estimation tool, which is a tool for performing parameter estimation and
validation, stores and organizes data from a given Simulink model inside a session. To
open the Parameter Estimation tool, select Analysis > Parameter Estimation in the
Simulink model window.

When using the Parameter Estimation tool, you can:

* Manage estimation sessions

+ Select parameters and initial conditions to configure the estimation

+ Specify cost functions

+ Import signal data (to be matched by the input and output of your Simulink model)

* Specify the initial conditions of your model
Each estimation session can include:

* One or more estimation or validation experiments
* Parameter information

+ Different settings or configurations for each experiment

The default session name is the same as the Simulink model name. The session name is
shown on the title pane of Parameter Estimation tool.

Save Parameter Estimation Tool Sessions

To save your session as a MAT-file, click Save Session drop down list on the
Parameter Estimation tab.

Estimation Sessions

Save Session - Sele

Darams:

Save to file
Save to model workspace

Save to MATLAE workspace

You have the options to browse to the location where you want to save the session using
the Save to fFile option, or save to model workspace or MATLAB workspace.

Load Parameter Estimation Tool Sessions

To open previously saved sessions, click the Open Session drop-down menu.

|| Open Session ~ LLJ

Open from file

Open from model workspace

Open from MATLAE workspace

You have the option to browse to where the session file is, or open a session from model
workspace or the MATLAB workspace. All sessions are MAT-files.

Load Legacy Projects
You can open legacy projects that are in MAT-files by selecting Open from file

from the Open Session drop-down list. The Parameter Estimation tool recognizes and
converts them into the new session format.

2-73

2 Parameter Estimation

How the Software Formulates Parameter Estimation as an
Optimization Problem

2-74

In this section...

“Overview of Parameter Estimation as an Optimization Problem” on page 2-74
“Cost Function” on page 2-74

“Bounds and Constraints” on page 2-76

“Optimization Methods and Problem Formulations” on page 2-77

Overview of Parameter Estimation as an Optimization Problem

When you perform parameter estimation, the software formulates an optimization
problem. The optimization problem solution is the estimated parameter values set. This
optimization problem consists of:

* x— Design variables. The model parameters and initial states to be estimated.

* F(x) — Objective function. A function that calculates a measure of the difference
between the simulated and measured responses. Also called cost function or
estimation error.

. <x<x .. .
(Optional) L=%=X __ Bounds. Limits on the estimated parameter values.

* (Optional) C(x) — Constraint function. A function that specifies restrictions on the
design variables.

The optimization solver tunes the values of the design variables to satisfy the specified
objectives and constraints. The exact formulation of the optimization depends on the
optimization method that you use.

Cost Function

+ “Types” on page 2-75
* “Time Base” on page 2-75

The software tunes the model parameters to obtain a simulated response (y,;,,) that
tracks the measured response or reference signal (y,). To do so, the solver minimizes the
cost function or estimation error, a measure of the difference between the simulated and
measured responses. The cost function, F(x), is the objective function of the optimization
problem.

How the Software Formulates Parameter Estimation as an Optimization Problem

Types

The raw estimation error, e(t), is defined as:

e(t) = yref(t) —Ysim ®

e(t) 1s also referred to as the error residuals or, simply, residuals.

Simulink Design Optimization software provides you the following cost functions to
process e(f):

Cost Function Formulation Option Name in GUI or
Command Line
Sum squared error (default) ty "SSE*
F(x)=Y e(t)xe()
t=0
N is the number of samples.
Sum absolute error ty "SAE*
F(x)=) k@]
t=0
N is the number of samples.
Raw error e(0) "Residuals™

F(x)=

This option is available only
e(N) at the command line.

N is the number of samples.

Custom function N/A This option is available only
at the command line.

Time Base

The software evaluates the cost function for a specific time interval. This interval is
dependent on the measured signal time base and the simulated signal time base.

* The measured signal time base consists of all the time points for which the measured
signal is specified. In case of multiple measured signals, this time base is the union of
the time points of all the measured signals.

2-75

2 Parameter Estimation

2-76

* The simulated signal time base consists of all the time points for which the model is
simulated.

If the model uses a variable-step solver, then the simulated signal time base can change
from one optimization iteration to another. The simulated and measured signal time
bases can be different. The software evaluates the cost function for only the time interval
that is common to both. By default, the software uses only the time points specified by
the measured signal in the common time interval.

* In the GUI, you can specify the simulation start and stop times in the Simulation
time area of the Simulation Options dialog box.

* At the command line, the software specifies the simulation stop time as the last
point of the measured signal time base. For example, the following code simulates
the model until the end time of the longest running output signal of exp, an
sdo.Experiment object:

createSimulator(exp);
sim(sim_obj);

sim_obj
sim_obj

sim_obj contains the simulated response for the model associated with exp.

Bounds and Constraints

You can specify bounds for the design variables (estimated model parameters), based on
your knowledge of the system. Bounds are expressed as:

x<x <X

x and x are the lower and upper bounds for the design variables.

For example, in a battery discharging experiment, the estimated battery initial charge
must be greater than zero and less than Inf. These bounds are expressed as:

O<x<oo

For an example of how to specify these types of bounds, see “Estimate Model Parameters
and Initial States (Code)” on page 2-105.

You can also specify other constraints, C(x), on the design variables at the command line.
C(x) can be linear or nonlinear and can describe equalities or inequalities. C(x) can also
specify multiparameter constraints. For example, for a simple friction model, C(x) can

Minimization Problem

specify that the static friction coefficient must be greater than or equal to the dynamic
friction coefficient. One way of expressing this constraint is:

C(x) : %) — x9
Clx) <0

x1 and x, are the dynamic and static friction coefficients, respectively.

For an example of how to specify a constraint, see “Estimate Model Parameters with
Parameter Constraints (Code)” on page 2-141.

Optimization Methods and Problem Formulations

An optimization problem can be one of the following types:

* Minimization problem — Minimizes an objective function, F(x). You specify the
measured signal that you want the model output to track. You can optionally specify
bounds for the estimated parameters.

+ Mixed minimization and feasibility problem — Minimizes an objective function, F(x),
subject to specified bounds and constraints,C(x). You specify the measured signal
that you want the model to track and bounds and constraints for the estimated

parameters.

* Feasibility problem — Finds a solution that satisfies the specified constraints, C(x).
You specify only bounds and constraints for the estimated parameters. This type of
problem is not common in parameter estimation.

The optimization method that you specify determines the formulation of the estimation
problem. The software provides the following optimization methods:

Optimization Method Name

Description

Optimization Problem Formulation

+ User interface: Nonlinear
Least Squares

+ Command line:
"Isgnonlin®

Minimizes the squares of
the residuals, recommended
method for parameter
estimation.

This method requires a vector
of error residuals, computed
using a fixed time base. Do not
use this approach if you have

Minimization Problem

min||F(x)||§ = min(fl(x)2 + /o

X X
st. x<x<X

(x)? +...+f,

2-77

2 Parameter Estimation

Optimization Method Name

Description

Optimization Problem Formulation

a scalar cost function or if the
number of error residuals can
change from one iteration to
another.

This method uses the
Optimization Toolbox function,
Isgnonlin.

f1(%), f2(x),....f2(x) represent
residuals. n is the number of
samples.

Mixed Minimization
and Feasibility
Problem

Not supported.

Feasibility Problem

Not supported.

2-78

Minimization Problem

Optimization Method Name

Description

Optimization Problem Formulation

+ User interface: Gradient
Descent

* Command line: "fmincon"

General nonlinear solver, uses
the cost function gradient.

Use this approach if you
want to specify one or any
combination of the following:

+ Custom cost functions

+ Parameter-based
constraints

+ Signal-based constraints

This method uses the
Optimization Toolbox function,
fmincon.

For information on how the
gradient is computed, see
“Gradient Computations” on
page 2-92.

Minimization Problem

Mixed Minimization
and Feasibility
Problem

min F(x)

X
st. C(x)<0
XxX<x<X

Note: When tracking a reference
signal, the software ignores

the maximally feasible solution
option.

Feasibility Problem

+ If you select the maximally
feasible solution option (i.e.,
the optimization continues
after an initial feasible
solution is found), the
software uses the following
problem formulation:

2-79

2 Parameter Estimation

Optimization Method Name

Description

Optimization Problem Formulation

fer] 7

st. Clx)<y
x<x<x
¥y<0

y is a slack variable that
permits a feasible solution
with C(x) <y rather than C(x)
<0.

+ If you do not select the
maximally feasible solution
option (i.e., the optimization
terminates as soon as
a feasible solution is
found), the software uses
the following problem
formulation:

min 0
X

st. C(x)<0
X<x<X

2-80

Minimization Problem

Optimization Method Name

Description

Optimization Problem Formulation

+ User interface: Simplex
Search

* Command line:
"fminsearch”

Based on the Nelder-Mead
algorithm, this approach
does not use the cost function
gradient.

Use this approach if your cost
function or constraints are not
continuous or differentiable.

This method uses the
Optimization Toolbox functions,
fminsearch and fminbnd.
fminbnd is used if one scalar
parameter is being optimized.
Otherwise, fminsearch

1s used. You cannot specify
parameter bounds, x < x <X,

with fminsearch.

Minimization Problem

min F(x)
X

Mixed Minimization
and Feasibility
Problem

The software formulates the
problem in two steps:

1 Finds a feasible solution.

min max(C(x))

2 Minimizes the objective.
The software uses the
results from step 1 as
initial guesses. It maintains
feasibility by introducing a
discontinuous barrier in the
optimization objective.

min T'(x)
X

where
oo if max (C(x)) >
F(x) otherwise.

T'(x) ={

2-81

2 Parameter Estimation

Optimization Method Name

Description

Optimization Problem Formulation

Feasibility Problem

min max(C(x))

2-82

Minimization Problem

Optimization Method Name

Description

Optimization Problem Formulation

+ User interface: Pattern
Search

+ Command line:
"patternsearch”

Direct search method, based on
the generalized pattern search
algorithm, this method does not
use the cost function gradient.

Use this approach if your cost
function or constraints are not
continuous or differentiable.

This method uses the Global
Optimization Toolbox function,
patternsearch.

Minimization Problem

Mixed Minimization
and Feasibility
Problem

The software formulates the
problem in two steps:

1 Finds a feasible solution.

min max(C(x))

st. x<x<Xx

2 Minimizes the objective.
The software uses the
results from step 1 as
initial guesses. It maintains
feasibility by introducing a
discontinuous barrier in the
optimization objective.

min I'(x)
X

St.x<x<X

where

M =1 1fmax(‘C(x)) >
F(x) otherwise.

2-83

2 Parameter Estimation

Optimization Method Name Description Optimization Problem Formulation

Feasibility Problem

min max(C(x))

st. x<x<Xx

2-84

See Also

fminbnd | fmincon | fminsearch | Isgnonlin | patternsearch
| sdo.Experiment | sdo.requirements.SignalTracking |
sdo.requirements._SignalTracking | sdo.SimulationTest

Related Examples
. “Estimate Model Parameter Values (Code)” on page 2-93

. “Estimate Model Parameters with Parameter Constraints (Code)” on page 2-141
. “Estimate Parameters from Measured Data”
More About

. “Writing a Cost Function” on page 2-85

Writing a Cost Function

Writing a Cost Function

In this section...

“Cost Function Overview” on page 2-85
“Convenience Objects” on page 2-86
“Inputs” on page 2-87

“Evaluate Requirements” on page 2-88

“Outputs” on page 2-89

Cost Function Overview

When you use sdo.optimize to optimize model parameters (design variables), you must
provide a MATLAB function as an input to sdo.optimize. This function, also called

a cost function, must evaluate the cost and constraint values for the design variable
values for an iteration. (The cost and constraint functions are collectively referred to as
requirements.) sdo.optimize calls this function at every optimization iteration and use
the function output to decide the optimization direction.

The cost function can also be used for global sensitivity analysis. You generate
samples of the model parameters and evaluate the cost function for each sample using
sdo.evaluate.

The cost function must have:

* Input — params, a vector of the design variables (param.Continuous objects) to be
optimized.
* Output:
* (Required) vals, a structure with one or more fields that specify the values of the
cost and constraint violations.

* (Optional) derivs, a structure with one or more fields that specify the values of
the gradients of the cost and constraint violations.

You perform the following tasks within the function:

+ Extract the current design variable values from params.

+ If the simulated response is required for evaluating the requirements, then simulate
the model using the current design variable values.

2-85

2 Parameter Estimation

+ Evaluate the requirements.

+ Specify the requirement values as fields of vals.
To use a cost function with sdo.optimize, enter:
[param_opt,opt_info] = sdo.optimize(@myCostFunc,param)

Here, myCostFunc is the name of the MATLAB function and param is a vector of the
design variables.

Similarly, to use a cost function with sdo.evaluate, enter:

[y.info] = sdo.evaluate(@myCostFunc,param)

Convenience Objects

The software provides you with the following convenience objects that can you can use in
the cost function:

Class Name Description

sdo.SimulationTest Use an sdo.SimulationTest object, also

referred to as a simulator, to simulate a model.

The simulator allows you to simulate the model
using alternative inputs, model parameter

and initial-state values, without modifying the

model.

You configure the simulator to log the signals
needed to evaluate requirements and use the
sim method to simulate the model. Then, you
extract the model response from the object and
evaluate the requirements.

2-86

Time-domain requirements:

sdo.requirements.SignalBound
+ sdo.requirements.StepResponseEnveloj

Requirements Obied'S' Use these requirements objects to specify time-

and frequency-domain costs or constraints on
the design variables.

You configure the properties of the object and
then use the object’s evalRequirement method
to evaluate how closely the current design

+ sdo.requirements.SignalTracking variables satisfy your design requirement.

Requirements objects:

Class Name

Description

Frequency-domain requirements:

+ sdo.requirements.GainPhaseMargin
sdo.requirements.BodeMagnitude

+ sdo.requirements.ClosedLoopPeakGain

+ sdo.requirements.PZDampingRatio
sdo.requirements.PZNaturalFrequency
sdo.requirements.PZSettlingTime

+ sdo.requirements.SignalTracking

+ sdo.requirements.StepResponseEnveloj
sdo.requirements.OpenLoopGainPhase

sdo.Experiment

Use an sdo.Experiment object, also referred
to as simply an experiment, to specify the input/
output data, model parameter and initial-state
values for parameter estimation.

You update the design variable values
associated with the experiment using the
setEstimatedValues method. Then, you
create a simulator, using the createSimulator
method, to simulate the model using the
updated model configuration.

Inputs

* “Model Parameters and States” on page 2-87

* “Multiple Inputs” on page 2-88

Model Parameters and States

The function must take as input a vector of model parameter objects
(param.Continuous objects) and, optionally, initial-state objects (param.State
objects). These objects represent the design variables of the optimization problem.
You obtain these objects by using the sdo.getParameterFromModel and

sdo.getStateFromModel commands.

2-87

2 Parameter Estimation

2-88

To access a design variable value, use:
param_val = p(1).Value;

Here, p is a vector of param.Continuous objects and p(1) is either a model parameter
or an initial-state object.

Multiple Inputs

sdo.optimize requires that the cost function accept only one input argument,
params. However, you might want to use additional inputs. For instance, you could
make the model name an input argument and configure the function to be used

for multiple models. To call sdo.optimize and use a function that accepts more
than one input argument, you use an anonymous function. For example, suppose
myCostFunc_mult_inputs is a cost function that takes param, argl, and arg2 as
inputs. Then, assuming that all input arguments are variables in the workspace, you
enter:

myCostFunc = @(param) myCostFunc_mult_inputs(param,argl,arg2);
[param_opt,opt_info] = sdo.optimize(@myCostFunc,param);

Additional inputs can also help reduce code redundancy and computation cost, given that
the function is called repeatedly by sdo.optimize during optimization. For instance,

if you use a convenience object in your function, you can create it once, before calling
sdo.optimize. Then, you can modify the convenience object’s properties as required
within the function for each iteration.

Evaluate Requirements

The core of the function is where you evaluate how well the current design variables
satisfy the design requirements. You can use MATLAB functions to do so. You can also
use the requirements objects that the Simulink Design Optimization software provides.
These objects enable you to specify requirements such as step-response characteristics,
gain/phase margin bounds, Bode magnitude bounds, etc.

* Parameter-only requirements — Extract the design variable values and compute the
requirement values.

For example, you can minimize the cylinder cross-sectional area, a design variable, in
a hydraulic cylinder. See “Design Optimization to Meet a Custom Objective (Code)”.

* Model response-based requirements — Simulate the model using the current design
variable values, extract the model response, and compute the requirement values.

Requirements objects:

There are multiple ways to simulate the model, including:

+ Using an sdo.SimulationTest object. You update the model parameter values
using the simulator’s Parameters property. Then, you use the sim method to
simulate the model and extract the logged signals from the simulator that are of

interest. For an example, see “Design Optimization to Meet a Custom Objective
(Code)”.

In parameter estimation, you can use the createSimulator method of the
sdo.Experiment object to create the simulator. Before creating the simulator,
you update the experiment with the current design variable values using the
setEstimatedValues method. For an example, see “Estimate Model Parameters
Per Experiment (Code)” on page 2-128

Using sdo.setValuelnModel to update the model and then calling sim to
simulate the model.

* Linear model-based requirements — Update the model with the current design
variable values, linearize the model, and compute the requirement values.

Use sdo.setValuelnModel to update the model and functions such as 1inmod or
linearize to linearize the model. I inearize requires a Simulink Control Design™
license.

Outputs

* “Cost and Constraint Values” on page 2-89

+ “Multiple Objectives” on page 2-90
Cost and Constraint Values

Your function must return a structure containing the cost and constraint values for the
current design variables. This structure must have one or more of the following fields, as
required by your optimization problem:

* F— Cost value.

+ Cleq, Ceq — Nonlinear constraint values. The solver satisfies Cleq <0 and Ceq = O.
+ leq, eq — Linear constraint values. The solver satisfies leq<0 and eq = 0.

If you have multiple constraints of one type, concatenate the values into a vector,
and specify this vector as the corresponding field value. For instance, if you have a

2-89

2 Parameter Estimation

hydraulic cylinder, you can specify nonlinear inequality constraints on the piston position
(Cleql) and cylinder pressure (Cleq2). In this case, specify the Cleq field of the output
structure, vals, as:

vals._Cleq = [Cleql; Cleqg2];
For an example, see “Design Optimization to Meet a Custom Objective (Code)”.

By default, the software computes the cost and constraint gradients using numeric
perturbation. However, you can specify the gradients and return them as an additional
output. This output must be a structure with one or more of the following fields, as
required by your optimization problem:

* F — Cost derivatives.

+ Cleq— Nonlinear inequality constraints derivatives.

* Ceq— Nonlinear equality constraints derivatives.
You must also set the GradFcn property of the optimization option set to "on*™.
Multiple Objectives

Simulink Design Optimization does not support multi-objective optimization. However,
you can return the cost value (F) as a vector, representing the multiple objective values.
Using this approach does not halt the optimization. Instead, the software sums the
elements of the vector and minimizes this sum. The exception to this behavior is if you
are using the nonlinear least squares (Isgnonl in) optimization method. The nonlinear
least squares method, used for parameter estimation, requires that you return the error
residuals as a vector. In this case, the software minimizes the sum square of this vector.

If you are tracking multiple signals and using Isgnonlin, then you must concatenate
the error residuals for the different signals into one vector. Specify this vector as the F
field value.

For an example of single objective optimization using the gradient descent method, see
“Design Optimization to Meet a Custom Objective (Code)”.

For an example of multiple objective optimization using the nonlinear least squares
method, see “Estimate Model Parameters Per Experiment (Code)” on page 2-128.

See Also

sdo.OptimizeOptions | param.Continuous | sdo.SimulationTest |
sdo.Experiment | sdo.optimize | sdo.setValuelnModel

2-90

Requirements objects:

Related Examples

. “Design Optimization to Meet a Custom Objective (Code)”
. “Estimate Model Parameter Values (Code)” on page 2-93

More About

“How the Optimization Algorithm Formulates Minimization Problems”

“How the Software Formulates Parameter Estimation as an Optimization Problem”
on page 2-74

2-91

2 Parameter Estimation

Gradient Computations

For the Gradient descent (fmincon) optimization solver, the gradients are computed
using numerical perturbation:

1
dx = 3eps x max|| x| ' 10 Ytpical

min)
dR = min (x +dx, %5y)
F; =opt _fen(dL)

Fp =opt _fen(dR)

dF _(Fy - Fg)

dx (dL-dR)

dL = max(x - dx,x

* x1s a scalar design variable.
* Xpin 1s the lower bound of x.

* Xmax 18 the upper bound of x.

* Xypicar 15 the scaled value of x.

* opt_fcn 1s the objective function.
dx is relatively large to accommodate simulation solver tolerances.

If you want to compute the gradients in any other way, you can do so in the cost function
you write for performing design optimization programmatically. See sdo.optimize and
GradFcn of sdo.OptimizeOptions for more information.

See Also

fmincon

More About

. “How the Software Formulates Parameter Estimation as an Optimization Problem’
on page 2-74

i

. “How the Optimization Algorithm Formulates Minimization Problems”

2-92

Estimate Model Parameter Values (Code)

Estimate Model Parameter Values (Code)

This example shows how to use experimental data to estimate model parameter values.

Aircraft Model

The Simulink model, sdoAircraftEstimation, models the longitudinal flight control
system of an aircraft.

open_system("sdoAircraftEstimation”®)

Aircraft Longitudinal Flight Control

This demonstraticn models a flight control algorithm
of an aircraft.

Group 2
%p Signal 1 P Stick, in . .
1 wdot, fifzec” P wdot, fiizec”
™ q, radizeciomd, de > {5 . dea))
Filet B ! Tas+1 ¢
™, rad
— Actuator - . |
Controller Model qdot, radizec” Blqdot HzPilot. g NPkt g
Nz Pilct, g
— Jn wiGust, fisec
q, radisec
q. radisec P g, radisec
wGust Filot G-force
g P Rl qust, radfsec | caleulation
qbust o, rad
94
Dryden Wind E:;:::L
Gust Models » Mg Model abha, rad
(1
slpha, rad

Copyright 1920-2012 The MathWorks, Inc.

Estimation Problem
You use measured data to estimate the aircraft model parameters and states.

Measured output data:

2-93

2 Parameter Estimation

2-94

+ Pilot G force, output of the Pilot G-force calculation block
* Angle of attack, fourth output of the Aircraft Dynamics Model block

Parameters:

+ Actuator time constant, Ta, used by the Actuator Model block
+ Vertical velocity, Zd, used by the Aircraft Dynamics Model block
* Pitch rate gains, Md, used by the Aircraft Dynamics Model block

State:

+ Initial state of the first-order actuator model, sdoAircraftEstimation/Actuator
Model

Define the Estimation Experiment
Get the measured data.
[time,iodata] = sdoAircraftEstimation_Experiment;

The sdoAircraftEstimation_Experiment function returns the measured output
data, iodata, and the corresponding time vector. The first column of 1odata is the pilot
G force and the second column is the angle of attack.

To see the code for this function, type edit sdoAircraftEstimation_Experiment.

Create an experiment object to store the measured input/output data.
Exp = sdo.Experiment(”“sdoAircraftEstimation®);
Create an object to store the measured pilot G-Force output.

PilotG = Simulink.SimulationData.Signal;

PilotG.Name = "PilotG";

PilotG.BlockPath = "sdoAircraftEstimation/Pilot G-force calculation”;
PilotG.PortType = T“outport”;

PilotG.Portindex = 1;

PilotG.Values timeseries(iodata(:,2),time);
Create an object to store the measured angle of attack (alpha) output.

AocA = Simulink._SimulationData.Signal;

Estimate Model Parameter Values (Code)

AoA_Name = "AngleOfAttack”;

AoA_BlockPath = “sdoAircraftEstimation/Aircraft Dynamics Model*®;
AOA_PortType = "outport®;

AoA.Portlndex = 4;

AoA _Values = timeseries(iodata(:,1),time);

Add the measured pilot G-Force and angle of attack data to the experiment as the
expected output data.

Exp.OutputData = [--.

PilotG;
AoA];

Add the initial state for the Actuator Model block to the experiment. Set its Free field
to true so that it is estimated.

Exp.InitialStates = sdo.getStateFromModel ("sdoAircraftEstimation”, "Actuator Model™);
Exp.InitialStates.Minimum = O;
Exp.InitialStates.Free = true;

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the experiment and obtain the simulated output.

Simulator
Simulator

createSimulator(Exp);
sim(Simulator);

Search for the pilot G-Force and angle of attack signals in the logged simulation data.

SimLog = find(Simulator.LoggedData,get_param(“sdoAircraftEstimation”, "SignallLogg!
PilotGSignal = find(SimLog, "PilotG");
AoASignal = Find(SimLog, "AngleOfAttack™);

Plot the measured and simulated data.

As expected, the model response does not match the experimental output data.

plot(time, iodata,
AoASignal .Values._Time,AoASignal .Values_Data,"--", ...
PilotGSignal .Values.Time,PilotGSignal .Values_.Data, " -.");
title("Simulated and Measured Responses Before Estimation®)
legend(“Measured angle of attack®, “Measured pilot g force-®,
*Simulated angle of attack®, "Simulated pilot g force");

2-95

2 Parameter Estimation

Simulated and Measured Responses Before Estimation

8 T T T T T
Measured angle of attack
1! [L [Measured pilat g force g
[[Simulated angle of attack
| ‘ f | |=—- Simulated pilat g force
4r A | i | |r, | |., [4
| r': ‘1 r'l I:
[N I (A I NN N I (A
2r | ~ ! £ | ; .".\. i " ll.'\] I S
. |;'h" |' |I|"L; |i Y |! |;".J [I i
S R D O
| : i | l " [" . R !
1] | i|' LT '].i | f!
| . 1 | .; . ||j
-4 H g | ; | ll || v | 7
| I
| | I I I ‘
| I | J | J | |
i J I I'./f- — I'-/'_ . Ik/'" - |I\/,,__,_ <
-A | L i 1 1
0 10 20 30 40 50 G0

Specify the Parameters to Estimate

Select the model parameters that describe the flight control actuation system. Specify
bounds for the estimated parameter values based on our understanding of the actuation

system.

p = sdo.getParameterFromModel ("sdoAircraftEstimation”,{"Ta","Md","Zd"});

p(1) -Minimum = 0.01; %Ta
p(1) -Maximum = 1;
p(2) -Minimum = -10; %Md
p(2) -Maximum = O;
p(3) -Minimum = -100; %Zd
p(3) -Maximum = O;

Get the actuator initial state value that is to be estimated from the experiment.

2-96

Estimate Model Parameter Values (Code)

s = getValuesToEstimate(Exp);
Group the model parameters and initial states to be estimated together.

v = [p;s]

v(1,1) =

Name: "Ta“

Value: 0.5000
Minimum: 0.0100
Maximum: 1

Free: 1
Scale: 0.5000
Info: [1x1 struct]

v(2,1) =

Name: “"Md*
Value: -1
Minimum: -10
Maximum: O
Free: 1
Scale: 1
Info: [1x1 struct]

v(3,1) =

Name: "ZzZd*
Value: -80
Minimum: -100
Maximum: O
Free: 1
Scale: 128
Info: [1x1 struct]

v(4,1) =
Name: "sdoAircraftEstimation/Actuator

Model *
Value: 0O

2-97

2 Parameter Estimation

2-98

Minimum: O
Maximum: Inf

Free: 1
Scale: 1
dxValue: O
dxFree: 1

Info: [1x1 struct]
4x1 param.Continuous

Define the Estimation Objective Function

Create an estimation objective function to evaluate how closely the simulation output,
generated using the estimated parameter values, matches the measured data.

Use an anonymous function with one input argument that calls the
sdoAircraftEstimation_Objective function. We pass the anonymous function to
sdo.optimize, which evaluates the function at each optimization iteration.

estFcn = @(v) sdoAircraftEstimation_Objective(v,Exp);
The sdoAircraftEstimation_Objective function:

* Has one input argument that specifies the actuator parameter values and the
actuator initial state.

* Has one input argument that specifies the experiment object containing the measured
data.

+ Returns a vector of errors between simulated and experimental outputs.

The sdoAircraftEstimation_Objective function requires two inputs, but
sdo.optimize requires a function with one input argument. To work around
this, estFcn is an anonymous function with one input argument, v, but it calls
sdoAircraftEstimation_Objective using two input arguments, v and Exp.

For more information regarding anonymous functions, see "Anonymous Functions".

The sdo.optimize command minimizes the return argument of the
anonymous function estFcn, that is, the residual errors returned by
sdoAircraftEstimation_Objective. For more details on how to write an

Estimate Model Parameter Values (Code)

objective/constraint function to use with the sdo.optimize command, type help
sdoExampleCostFunction at the MATLAB command prompt.

To examine the estimation objective function in more detail, type edit
sdoAircraftEstimation_Objective at the MATLAB command prompt.

type sdoAircraftEstimation_Objective
function vals = sdoAircraftEstimation_Objective(v,Exp)

%SDOAIRCRAFTEST IMATION_OBJECTIVE
%

% The sdoAircraftEstimation_Objective function is used to compare model
% outputs against experimental data.

%

% vals = sdoAircraftEstimation_Objective(v,Exp)

%

% The |v| input argument is a vector of estimated model parameter values
% and initial states.

%

% The |Exp] input argument contains the estimation experiment data.

%

% The |vals| return argument contains information about how well the

% model simulation results match the experimental data and is used by
% the |sdo.optimize| function to estimate the model parameters.

%

% See also sdo.optimize, sdoExampleCostFunction,

% sdoAircraftEstimation_cmddemo

%
% Copyright 2012 The MathWorks, Inc.

%%

% Define a signal tracking requirement to compute how well the model output
% matches the experiment data. Configure the tracking requirement so that
% it returns the tracking error residuals (rather than the

% sum-squared-error) and does not normalize the errors.

%

r = sdo.requirements.SignalTracking;

r.Type = "==";

r .Method = "Residuals®;

r.Normalize = "off";

%%
% Update the experiments with the estimated parameter values.

2-99

2 Parameter Estimation

2-100

%
Exp = setEstimatedValues(Exp,Vv);

%%

% Simulate the model and compare model outputs with measured experiment
% data.

%

Simulator = createSimulator(Exp);

Simulator = sim(Simulator);

SimLog = Find(Simulator.LoggedData,get _param(“sdoAircraftEstimation”, "SignallLogg
PilotGSignal = find(SimLog, "PilotG");

AoASignal = Find(SimLog, "AngleOfAttack”);

PilotGError
AoAError

evalRequirement(r,PilotGSignal .Values,Exp.OutputData(l) -Values);
evalRequirement(r,AoASignal .Values,Exp.OutputData(2) .Values);

%%

% Return the residual errors to the optimization solver.
%

vals.F = [PilotGError(:); AoAError(:)];

end

Estimate the Parameters

Use the sdo.optimize function to estimate the actuator parameter values and initial
state.

Specify the optimization options. The estimation function
sdoAircraftEstimation_Objective returns the error residuals between simulated
and experimental data and does not include any constraints, making this problem ideal
for the 'Isqnonlin' solver.

opt = sdo.OptimizeOptions;
opt.Method = "lIsgnonlin®;

Estimate the parameters.

vOpt = sdo.optimize(estFcn,v,opt)

Optimization started 04-Sep-2014 11:22:57

Step-size First-order
Iter F-count () optimality

Estimate Model Parameter Values (Code)

9
18
27
36
45
54
63
72
81
90
10 99
11 108

O©CoO~NOUAWNEO

27972.2
10124.8
3127.92
872.751
238.66
71.9182
17.2194
1.82827
0.0440753
0.0020167
0.000244535
5.74974e-05

Local minimum possible.

1

0.4744
0.3854
0.4286
0.5147
0.493
0.4163
0.3069
0.1321
0.03129
0.008145
0.005686

5.69e+04
1.24e+04
2.81e+03
618

147

449
11.4
1.38
0.0871
0.119
0.00522

Isgnonlin stopped because the final change in the sum of squares relative to

its initial
vopt(1,1) =

Name:
Value:
Minimum:
Maximum:
Free:
Scale:
Info:

vopt(2,1) =

Name:
Value:
Minimum:
Maximum:
Free:
Scale:
Info:

vOopt(3,1) =
Name:

Value:
Minimum:

value 1is

“Ta"
0.0500
0.0100

1

1

0.5000

[1x1 struct]

“Md"
-6.8848

-10

0

1

1

[1x1 struct]

“7d"
-63.9983
-100

less than the selected value of the function tolerance.

2-101

2 Parameter Estimation

Maximum: O
Free: 1
Scale: 128
Info: [1x1 struct]

vOpt(4,1) =

Name: "sdoAircraftEstimation/Actuator
Model *
Value: 6.3839e-05
Minimum: O
Maximum: Inf

Free: 1
Scale: 1
dxValue: O
dxFree: 1

Info: [1x1 struct]
4x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

Update the experiments with the estimated parameter values.

Exp = setEstimatedValues(Exp,vOpt);

Simulate the model using the updated experiment and compare the simulated output
with the experimental data.

The model response using the estimated parameter values closely matches the
experiment output data.

Simulator = createSimulator(Exp);

Simulator = sim(Simulator);

SimLog = Ffind(Simulator.LoggedData,get_param(“sdoAircraftEstimation”, "SignallLogg!
PilotGSignal = find(SimLog, "PilotG");

AoASignal = Ffind(SimLog, "AngleOfAttack™);

plot(time, iodata, ...
AoASignal .Values.Time,AoASignal .Values_Data,"-.", ...
PilotGSignal .Values.Time,PilotGSignal .Values._.Data, " --")
title("Simulated and Measured Responses After Estimation®)

2-102

Estimate Model Parameter Values (Code)

legend(“Measured angle of attack®, “Measured pilot g force”,
"Simulated angle of attack®, "Simulated pilot g force®);

Simulated and Measured Responses After Estimation

8 T T T T T
Measured angle of attack
6l [— Ilr\—_--r. Measured pilat g force "
II | Simulated angle of attack
|' ‘ | ‘ — — — Simulated pilot g force
o S R R
I| |' | 1 | 1 |
Tl L L L
| . L |
Y
-4 _|I | | | | | -
| |I J I J I J | —J
6L — . L I'v”‘ I'Lf" I"\/’”_ 1
-B i L 1 i I
0 10 20 30 40 a0 &0

Update the Model Parameter Values

Update the model with the estimated actuator parameter values. Do not update
the model actuator initial state (fourth element of vOpt) as it is dependent on the

experiment.
sdo.setValuelnModel ("sdoAircraftEstimation”,vOpt(1:3));
Related Examples

To learn how to estimate model parameters using the Parameter Estimation Tool, see
““Estimate Model Parameter Values (GUI)".

2-103

2 Parameter Estimation

Close the model

bdclose("sdoAircraftEstimation™)

2-104

Estimate Model Parameters and Initial States (Code)

Estimate Model Parameters and Initial States (Code)

This example shows how to estimate the initial state and parameters of a model.
This example requires Simscape®.

RC Circuit Model

The Simulink model, sdoRCCircuit, models a simple resistor-capacitor (RC) circuit.

open_system("sdoRCCircuit®™);

AATATAY
R1
A W __ - Voltage
\s/ SVDC = C [;"""2 Sensor
1
5= 0 —D(PSSP
Sohver PS-Simulirk Scope
Configuwstion — Ground Converter

Copyright 2011 The MathWerks, Inc

Estimation Problem
You use the measured data to estimate the RC model parameter and state values.
Measured output data:

+ Capacitor voltage, output of the PS-Simulink Converter block

Parameter:

+ Capacitance, C1, used by the C1 block

2-105

2 Parameter Estimation

State:

+ Initial voltage of the capacitor, C1
Define the Estimation Experiment

Get the measured data.

load sdoRCCircuit_ExperimentData

The variables time and data are loaded into the workspace, where data is the
measured capacitor voltage for times time.

Create an experiment object to store the experimental voltage data.

Exp = sdo.Experiment(“sdoRCCircuit®);

Create an object to store the measured capacitor voltage output.

Voltage = Simulink.SimulationData.Signal;

Voltage.Name "Voltage”;

Voltage.BlockPath "sdoRCCircuit/PS-Simulink Converter”;
Voltage.PortType "outport”;

Voltage.PortlIndex 1;
Voltage.Values timeseries(data,time);

Add the measured capacitor data to the experiment as the expected output data.
Exp.OutputData = Voltage;

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the experiment and obtain the simulated output.

Simulator
Simulator

createSimulator(Exp);
sim(Simulator);

Search for the voltage signal in the logged simulation data.

find(Simulator.LoggedData,get_param(“sdoRCCircuit”, "SignalLoggingName®)’
find(SimLog, "Voltage®);

SimLog
Voltage

Plot the measured and simulated data.

The model response does not match the experimental output data.

plot(time,data, "ro",Voltage.Values.Time,Voltage.Values.Data, "b")
title("Simulated and Measured Responses Before Estimation®)

2-106

Estimate Model Parameters and Initial States (Code)

legend(“Measured Voltage®,"Simulated Voltage®)

Simulated and Measured Responses Before Estimation

E L] ¥ L] L] L] L] ¥ L] L]
O Measured Voltage
Simulated Valtage [
O - (] [S L) 8]
B o elolul®
e] o ond o L&) L
o o DO o OO o oo
o © ©
o
4k] 4
o
Co
3 -D N
1]
2 = -
1k .
D i i i i L i i i i
0 2 4 G 8 10 12 14 16 18 20

Specify the Parameters to Estimate

Select the capacitance parameter from the model. Specify an initial guess for the
capacitance value (460 uF) and a minimum bound (0 F).

p = sdo.getParameterFromModel ("sdoRCCircuit®,"C1%);

Define the Estimation Objective Function

Create an estimation objective function to evaluate how closely the simulation output,
generated using the estimated parameter value, matches the measured data.

2-107

2 Parameter Estimation

2-108

Use an anonymous function with one input argument that calls the
sdoRCCircuit _Objective function. We pass the anonymous function to
sdo.optimize, which evaluates the function at each optimization iteration.

estFcn = @(v) sdoRCCircuit_Objective(Vv,Exp);
The sdoRCCircuit_Objective function:
* Has one input argument that specifies the estimated circuit capacitance value.

* Has one input argument that specifies the experiment object containing the measured
data.

+ Returns a vector of errors between simulated and experimental outputs.

The sdoRCCircuit_Objective function requires two inputs, but sdo.optimize
requires a function with one input argument. To work around this, estFcn is an
anonymous function with one input argument, v, but it calls sdoRCCircuit_Objective
using two input arguments, v and EXp.

For more information regarding anonymous functions, see "Anonymous Functions".

The optimization solver minimizes the residual errors. For more details on how to write
an objective/constraint function to use with the sdo.optimize command, type help
sdoExampleCostFunction at the MATLAB command prompt.

To examine the estimation object function in more detail, type edit
sdoRCCircuit _Objective at the MATLAB command prompt.

type sdoRCCircuit_Objective

function vals = sdoRCCircuit_Objective(v,Exp)
%SDORCCIRCUIT_OBJECTIVE

% The sdoRCCircuit_Objective function is used to compare model
% outputs against experimental data.

% vals = sdoRCCircuit_Objective(v,Exp)

% The |v| input argument is a vector of estimated model parameter values
% and initial states.

%

% The |Exp] input argument contains the estimation experiment data.

Estimate Model Parameters and Initial States (Code)

% The |vals| return argument contains information about how well the

% model simulation results match the experimental data and is used by
% the |sdo.optimize| function to estimate the model parameters.

%

% See also sdo.optimize, sdoExampleCostFunction, sdoRCCircuit_cmddemo

%
% Copyright 2012 The MathWorks, Inc.

%%

% Define a signal tracking requirement to compute how well the model output
% matches the experiment data. Configure the tracking requirement so that

% it returns the tracking error residuals (rather than the

% sum-squared-error) and does not normalize the errors.

%

r = sdo.requirements.SignalTracking;

r.Type = "==";

r .Method = "Residuals”;

r.Normalize = "off";

%%

% Update the experiments with the estimated parameter values.
%

Exp = setEstimatedValues(Exp,Vv);

%%

% Simulate the model and compare model outputs with measured experiment
% data.

%

Simulator = createSimulator(Exp);

Simulator = sim(Simulator);

SimLog find(Simulator.LoggedData,get_param(“sdoRCCircuit”,"SignalLoggingName®));
Voltage = find(SimLog, "Voltage®);

VoltageError = evalRequirement(r,Voltage.Values,Exp.OutputData(l).Values);
%%

% Return the residual errors to the optimization solver.

%

vals_.F = VoltageError(:);
end

Estimate the Parameters

2-109

2 Parameter Estimation

2-110

Use the sdo.optimize function to estimate the capacitance value.

Specify the optimization options. The estimation function sdoRCCircuit_Objective
returns the error residuals between simulated and experimental data and does not
include any constraints, making this problem ideal for the 'lsqnonlin' solver.

opt = sdo.OptimizeOptions;
opt.Method = "lIsgnonlin®;

Estimate the parameters.

pOpt = sdo.optimize(estFcn,p,opt)

Optimization started 04-Sep-2014 11:24:00

Step-size First-order

Iter F-count) optimality

0 3 55.0041 1

1 6 21.0161 0.2124 17.2
2 9 11.5085 0.1272 6.08
3 12 9.56468 0.06553 1.99
4 15 9.27666 0.02744 0.442
5 18 9.27666 0.00717 0.442
6 21 9.27131 0.001793 0.356

Local minimum possible.

Isgnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the selected value of the function tolerance.

popt =

Name: "C1°
Value: 1.1600e-04
Minimum: O
Maximum: Inf
Free: 1
Scale: 0.0020
Info: [1x1 struct]

1x1 param.Continuous

Estimate Model Parameters and Initial States (Code)

Compare the Measured Output and the Simulated Output
Update the experiment with the estimated capacitance value.
Exp = setEstimatedValues(Exp,pOpt);

Create a simulation scenario using the experiment and obtain the simulated output.

Simulator
Simulator

= createSimulator(Exp);
= sim(Simulator);

Search for the voltage signal in the logged simulation data.

SimLog
Voltage

find(Simulator.LoggedData,get_param(“sdoRCCircuit”,"SignalLoggingName®));
find(SimLog, "Voltage®);

Plot the measured and simulated data.

The simulated and measured signals match well, except for near time zero. This
mismatch is because the capacitor initial voltage defined in the model does not match the
initial voltage from the experiment.

plot(time,data, "ro",Voltage.Values._Time,Voltage.Values_.Data, "b")

title("Simulated and Measured Responses After Estimation®)
legend(“Measured Voltage®,"Simulated Voltage®)

2-111

2 Parameter Estimation

2-112

Simulated and Measured Responses After Estimation

O Measured Voltage
Simulated Vaoltage
e uuuu 8]

o
o0
o

L=

14 16 18 20

Estimate the Initial State

Add the capacitor initial voltage for the C1 block to the experiment. Set its initial guess
valueto 1V.

Exp.InitialStates = sdo.getStateFromModel ("sdoRCCircuit®™,"C1");
Exp.InitialStates.Value = 1;

Recreate the estimation function to use the experiment with initial state estimation

estFcn = @(v) sdoRCCircuit_Objective(Vv,Exp);

Get the initial state and capacitance value that is to be estimated from the experiment.

Estimate Model Parameters and Initial States (Code)

v = getValuesToEstimate(Exp);

Estimate the parameters.

vOpt = sdo.optimize(estFcn,v,opt)

Optimization started 04-Sep-2014 11:24:11

Iter F-count

0 5
1 10
2 15
3 20
4 25

()
4.66337
2.01883
1.34889
1.34365
1.34363

Local minimum found.

Optimization completed because the size of the gradient is less than

Step-size

1

1.533
0.1257
0.0525
0.001294

First-order
optimality

21
0.0803
0.12
0.000711

the selected value of the function tolerance.

vopt(1,1) =

Name:
Value:
Minimum:
Maximum:
Free:
Scale:
dxValue:
dxFree:
Info:

vopt(2,1) =

Name:
Value:
Minimum:
Maximum:
Free:
Scale:
Info:

"sdoRCCircuit/Cl:sdoRCCircuit.Cl.vc"

2.3596

-Inf

Inf

1

1

0

1

[1x1 struct]

c1-
2.2638e-04
0

Inf

1

0.0020

[1x1 struct]

2-113

2 Parameter Estimation

2-114

2x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

Update the experiment with the estimated capacitance and capacitor initial voltage
values.

Exp = setEstimatedValues(Exp,vOpt);

Simulate the model with the estimated initial-state and parameter values and compare
the simulated output with the experiment data.

Simulator = createSimulator(Exp);

Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get_param(“sdoRCCircuit”, "SignalLoggingName®));
Voltage = find(SimLog, "Voltage™);

plot(time,data, "ro",Voltage.Values.Time,Voltage.Values.Data, "b")
title("Simulated and Measured Responses After Initial State and Model Parameter Estima
legend("Measured Voltage®, "Simulated Voltage®)

Estimate Model Parameters and Initial States (Code)

nulated and Measured Responses After Initial State and Model Parameter Estin

5.5 ! . : ! . ! . : !
O Measured Voltage ¥
Simulated Vaoltage
[
o i
o
o]
2 i 1 i i 1 i 1 i i
0 2 4 6 8 10 12 14 16 18 20

Update the Model Parameter Values

Update the model with the estimated capacitance value. Do not update the model
capacitor initial voltage (first element of vOpt) as it is dependent on the experiment.

sdo.setValuelnModel ("sdoRCCircuit”,vOopt(2));
Related Examples

To learn how to estimate model parameters using the sdo.optimize command, see
“"Estimate Model Parameters and Initial States (GUI)"".

Close the model

bdclose("sdoRCCircuit™)

2-115

2 Parameter Estimation

Estimate Model Parameters using Multiple Experiments (Code)

This example shows how to estimate model parameters from multiple sets of
experimental data. You estimate the parameters of a mass-spring-damper system.

Open the Model and Get Experimental Data

This example uses the sdoMassSpringDamper model. The model includes two
integrators to model the velocity and position of a mass in a mass-spring-damper system.

open_system("sdoMassSpringDamper™);

elooity Position
i i 1 o L >
f— ; _ = wel o= pos _;. I:I
Mass (%0 =-0.1)
v s Pos tions
A [texp1 wexp]
\""-E“J' Experimental
Fosition Data 1
Damper
-"‘"'T:L [texp2 wexp2]
\‘H“T"‘"l Experimental
Spring Position Data 2
[m b k] -
Model Copyright 2002-2012 The MathWorks, Inc.
Parameters Mass/ Spring/ Damper
{from model workspace) Values

Load the experiment data.

load sdoMassSpringDamper_ExperimentData

The variables texpl, yexpl, texp2, and yexp2 are loaded into the workspace. yexpl
and yexp2 describe the mass position for times texpl and texp2 respectively.

2-116

Estimate Model Parameters using Multiple Experiments (Code)

Define the Estimation Experiments

Create a 2-element array of experiment objects to store the measured data for the two
experiments.

Create an experiment object for the first experiment.

Exp = sdo.Experiment(”sdoMassSpringDamper”®);

Create an object to store the measured mass position output.

MeasuredPos
MeasuredPos.Values
MeasuredPos.BlockPath
MeasuredPos.PortType
MeasuredPos.Portindex
MeasuredPos.Name

Simulink.SimulationData.Signal;
timeseries(yexpl,texpl);
"sdoMassSpringDamper/Position”;
"outport”;

1;
"Position”;

Add the measured mass position data to the experiment as the expected output data.

Exp.OutputData = MeasuredPos;

Create an object to specify the initial state for the Velocity block. The initial velocity of
the mass is 0 m/s.

sVel = sdo.getStateFromModel (" sdoMassSpringDamper”®, "Velocity");
sVel .Value = 0;
sVel .Free = false;

sVel _Free is set to False because the initial velocity is known and does not need to be
estimated.

Create an object to specify the initial state for the Position block. Specify a guess for
the initial mass position. Set the Free field of the initial position object to true so that it
is estimated.

sPos = sdo.getStateFromModel ("sdoMassSpringDamper”, "Position®);
sPos.Free = true;
sPos.Value = -0.1;

Add the initial states to the experiment.

Exp.InitialStates = [sVel;sPos];

2-117

2 Parameter Estimation

2-118

Create a 2-element array of experiments. As the two experiments are identical except for
the expected output data, copy the first experiment twice.

Exp = [Exp; Expl;

Modify the expected output data of the second experiment object in EXp.

Exp(2) -OutputData.Values = timeseries(yexp2,texp2);

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the first experiment and obtain the simulated output.

Simulator
Simulator

= createSimulator(Exp(1));
= sim(Simulator);

Search for the position signal in the logged simulation data.

SimLog
Position

find(Simulator.LoggedData,get_param("sdoMassSpringDamper”, "SignalLoggingNams
find(SimLog, "Position®);

Obtain the simulated position signal for the second experiment.

Simulator = createSimulator(Exp(2));

Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get_param("“sdoMassSpringDamper”, "SignallLogging!
Position(2) = find(SimLog, "Position”);

Plot the measured and simulated data.

The model response does not match the experimental output data.

subplot(211)
plot(..-.

Position(l).Values.Time,Position(1l).Values.Data,

Exp(1) -OutputData.Values.Time, Exp(l).OutputData.Values.Data," --")
title("Experiment 1: Simulated and Measured Responses Before Estimation®)
ylabel ("Position®)
legend(“Measured Position®,"Simulated Position®, "Location”, "SouthEast")
subplot(212)
plot(..-.

Position(2).Values.Time,Position(2).Values.Data,

Exp(2) -OutputData.Values.Time, Exp(2).0OutputData.Values.Data," --")
title("Experiment 2: Simulated and Measured Responses Before Estimation®)
xlabel ("Time (seconds)®)
ylabel ("Position®)

Estimate Model Parameters using Multiple Experiments (Code)

legend(“Measured Position®,"Simulated Position®, "Location”, "SouthEast")

Experiment 1: Simulated and Measured Responses Before Estimation

0.3 =

0.2}

0.1F

Fosition

Measured Position | -
Simulated Position

01
0

4] G T 8

Experiment 2: Simulated and Measured Responses Before Estimation

0.3

0.2

0.1

Fosition

Measured Position | -
Simulated Position

Specify Parameters to Estimate

3 4 5 G 7

Time (seconds)

Select the mass m, spring constant k, and damping coefficient b parameters from the
model. Specify that the estimated values for these parameters must be positive.

p = sdo.getParameterFromModel ("sdoMassSpringDamper®, {"b", "k", "m"});

p(1) -Minimum
p(2) -Minimum
p(3) -Minimum

0;
0;
0;

Get the position initial state values to be estimated from the experiment.

s = getValuesToEstimate(Exp);

2 Parameter Estimation

S contains two initial state objects, both for the Position block. Each object corresponds
to an experiment in Exp.

Group the model parameters and initial states to be estimated together.

v = [p;s]
v(1,1) =
Name: "b*
Value: 100

Minimum: O
Maximum: Inf
Free: 1
Scale: 128
Info: [1x1 struct]

v(2,1) =

Name: “"k*
Value: 500
Minimum: O
Maximum: Inf
Free: 1
Scale: 512
Info: [1x1 struct]

v(3,1) =

Name: "m
Value: 8
Minimum: O
Maximum: Inf
Free: 1
Scale: 8
Info: [1x1 struct]

v(4,1) =

Name: “sdoMassSpringDamper/Position”
Value: -0.1000

2-120

Estimate Model Parameters using Multiple Experiments (Code)

Minimum: -Inf
Maximum: Inf
Free: 1
Scale: 0.1250
dxValue: O
dxFree: 1

Info: [1x1 struct]

v(5,1) =

Name: “sdoMassSpringDamper/Position”
Value: -0.1000

Minimum: -Inf
Maximum: Inf
Free: 1
Scale: 0.1250
dxValue: O
dxFree: 1

Info: [1x1 struct]
5x1 param.Continuous

Define the Estimation Objective

Create an estimation objective function to evaluate how closely the simulation output,
generated using the estimated parameter values, matches the measured data.

Use an anonymous function with one input argument that calls the
sdoMassSpringDamper_Objective function. We pass the anonymous function to
sdo.optimize, which evaluates the function at each optimization iteration.

estFcn = @(v) sdoMassSpringDamper_Objective(v,Exp);
The sdoMassSpringDamper_Objective function:

* Has one input argument that specifies the mass, spring constant and damper values
as well as the initial mass position.

+ Has one input argument that specifies the experiment object containing the measured
data.

* Returns a vector of errors between simulated and experimental outputs.

2-121

2 Parameter Estimation

2-122

The sdoMassSpringDamper_Objective function requires two inputs, but
sdo.optimize requires a function with one input argument. To work around
this, estFcn is an anonymous function with one input argument, v, but it calls
sdoMassSpringDamper_Objective using two input arguments, v and EXp.

For more information regarding anonymous functions, see "Anonymous Functions".
The sdo.optimize command minimizes the return argument of the

anonymous function estFcn, that is, the residual errors returned by
sdoMassSpringDamper_Objective. For more details on how to write an
objective/constraint function to use with the sdo.optimize command, type help
sdoExampleCostFunction at the MATLAB command prompt.

To examine the estimation objective function in more detail, type edit
sdoMassSpringDamper_Objective at the MATLAB command prompt.

type sdoMassSpringDamper_Objective
function vals = sdoMassSpringDamper_Objective(v,Exp)

%SDOMASSSPRINGDAMPER_OBJECTIVE
%

% The sdoMassSpringDamper_Objective function is used to compare model
% outputs against experimental data.

%

% vals = sdoMassSpringDamper_Objective(Vv,Exp)

%

% The |v| input argument is a vector of estimated model parameter values
% and initial states.

%

% The |Exp] input argument contains the estimation experiment data.

%

% The |vals| return argument contains information about how well the
% model simulation results match the experimental data and is used by
% the |sdo.optimize| function to estimate the model parameters.

%

% see also sdo.optimize, sdoExampleCostFunction

%
% Copyright 2012 The MathWorks, Inc.
%%

% Define a signal tracking requirement to compute how well the model output
% matches the experiment data. Configure the tracking requirement so that

Estimate Model Parameters using Multiple Experiments (Code)

% it returns the tracking error residuals (rather than the
% sum-squared-error) and does not normalize the errors.

%

r = sdo.requirements.SignalTracking;

r.Type ==";

r .Method "Residuals®;

r.Normalize "off";

%%

% Update the experiments with the estimated parameter values.
%

Exp = setEstimatedValues(Exp,Vv);

%%

% Simulate the model and compare model outputs with measured experiment
% data.

%

Error = [];

for ct=1:numel (Exp)

Simulator
Simulator

createSimulator(Exp(ct));
sim(Simulator);

SimLog = find(Simulator.LoggedData,get_param("sdoMassSpringDamper*, "SignallLoggingl
Position = find(SimLog, "Position®);

PositionError = evalRequirement(r,Position.Values,Exp(ct).OutputData.Values);

Error = [Error; PositionError(:)];
end

%%

% Return the residual errors to the optimization solver.
%

vals.F = Error(:);

end

Estimate the Parameters

Use the sdo.optimize function to estimate the actuator parameter values and initial
state.

Specify the optimization options. The estimation function
sdoMassSpringDamper_Objective returns the error residuals between simulated and

2-123

2 Parameter Estimation

experimental data and does not include any constraints, making this problem ideal for
the 'Isqnonlin' solver.

opt = sdo.OptimizeOptions;
opt.Method = "lIsgnonlin®;

Estimate the parameters. Notice that the initial mass position is estimated twice, once
for each experiment.

vOpt = sdo.optimize(estFcn,v,opt)

Optimization started 04-Sep-2014 11:24:39

Step-size First-order
Iter F-count () optimality
0 11 0.777696 1
1 22 0.00413099 3.696 0.00648
2 33 0.00118327 0.3194 0.00243
3 44 0.0011106 0.06718 5.09e-05

Local minimum found.

Optimization completed because the size of the gradient is less than

the selected value of the function tolerance.

vopt(1,1) =
Name: "b*
Value: 58.1959
Minimum: O
Maximum: Inf
Free: 1
Scale: 128
Info: [1x1 struct]
vopt(2,1) =
Name: “"k*
Value: 399.9452
Minimum: O
Maximum: Inf
Free: 1
Scale: 512
Info: [1x1 struct]

2-124

Estimate Model Parameters using Multiple Experiments (Code)

vOpt(3,1) =

Name:
Value:
Minimum:
Maximum:
Free:
Scale:
Info:

vOpt(4,1) =

Name:
Value:
Minimum:
Maximum:
Free:
Scale:
dxValue:
dxFree:
Info:

vopt(5,1) =

Name:
Value:
Minimum:
Maximum:
Free:
Scale:
dxValue:
dxFree:
Info:

m
9.7225

0

Inf

1

8

[1x1 struct]

"sdoMassSpringDamper/Position*®
0.2995

-Inf

Inf

1

0.1250

0

1

[1x1 struct]

"sdoMassSpringDamper/Position*®
0.0994

-Inf

Inf

1

0.1250

0

1

[1x1 struct]

5x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

2 Parameter Estimation

2-126

Update the experiments with the estimated parameter values.

Exp = setEstimatedValues(Exp,vOpt);

Obtain the simulated output for the first experiment.

Simulator = createSimulator(Exp(1));

Simulator = sim(Simulator);

SimLog = Ffind(Simulator.LoggedData,get param(“sdoMassSpringDamper”®, "SignalLoggingl
Position(l) = find(SimLog, "Position®);

Obtain the simulated output for the second experiment.

Simulator = createSimulator(Exp(2));

Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get param(“sdoMassSpringDamper”®, "SignalLoggingl
Position(2) = find(SimLog, "Position®);

Plot the measured and simulated data.

The model response using the estimated parameter values nicely matches the output
data for the experiments.

subplot(211)
plot(..-.

Position(l).Values.Time,Position(l).Values.Data, ...

Exp(1) -OutputData.Values.Time, Exp(l).OutputData.Values.Data," --")
title("Experiment 1: Simulated and Measured Responses After Estimation®)
ylabel ("Position®)
legend(“Measured Position®,"Simulated Position®, "Location”, "NorthEast")
subplot(212)
plot(..-.

Position(2).Values.Time,Position(2).Values.Data, ...

Exp(2) -OutputData.Values.Time, Exp(2).0OutputData.Values.Data," --")
title("Experiment 2: Simulated and Measured Responses After Estimation®)
xlabel ("Time (seconds)®)
ylabel ("Voltage®)
legend(“Measured Position®,"Simulated Position®, "Location”, "SouthEast")

Estimate Model Parameters using Multiple Experiments (Code)

Fosition

Voltage

Experiment 1: Simulated and Measured Responses After Estimation

0.3

0.28 \

0.26 [

0.24

\. T L S . S
\/T:—‘ﬁ‘—‘f‘*“f S L

Measured Fosition
— = — Simulated FPosition | 7

0.22
0

Experiment 2: Simulated and Measured Responses After Estimation
0.3

1 2 3 4 5 G 7 8

0.25

0.2}

0.15

01F

\\-_/—_'T" L — = =

Measured Position
— — — Simulated Paosition

0.05

1 2 3 4 5 G 7
Time (seconds)

Update the Model Parameter Values

Update the model m, k, and b parameter values. Do not update the model initial position
value as this is dependent on the experiment.

sdo.setValuelnModel (" sdoMassSpringDamper”® ,vOpt(1:3));

Close the model

bdclose("sdoMassSpringDamper ™)

2-127

2 Parameter Estimation

Estimate Model Parameters Per Experiment (Code)

This example shows how to use multiple experiments to estimate a mix of model
parameter values; some that are estimated using all the experiments and others that
are estimated using individual experiments. The example also shows how to configure
estimation experiments with experiment dependent parameter values.

You estimate the parameters of a rechargeable battery based on data collected in
experiments that discharge and charge the battery.

Open the Model and Get Experimental Data

This example estimates parameters of a simple, rechargeable battery model,
sdoBattery. The model input is the battery current and the model output, the battery
terminal voltage, is computed from the battery state-of-charge.

open_system(“sdoBattery®);

simple Battery Model

¥

—r@—» l—f—hK ELT
Cumrent “woltage :l

Current

Voltage (V)

S0C = \oltage

Copyright 2012-2014 The MathWars, Inc

The model is based on the equation

) i i 1 — =
E=(] Loss) = | Ko+ Qar *

Where:

+ E is the battery terminal voltage in Volts.

2-128

Estimate Model Parameters Per Experiment (Code)

* V is the battery constant voltage in Volts.

+ K is the battery polarization resistance in Ohms.

(Jinar is the maximum battery capacity in Ampere-Hour.

+ s1is the battery charge state, with 1 being fully charged and 0 zero charge.The battery
state-of-charge is computed from the integral of the battery current with a +ve
current indicating discharge and a -ve current indicating charging. The battery initial

state-of-charge is specified by ¢o in Ampere-Hour.

* Loss is the voltage drop when charging, expressed as a fraction of the battery
constant voltage. When the battery is discharging this value is zero.

V, K, Qmax, QO0, and Loss are variables defined in the model workspace.

Load the experiment data. A 1.2V (6500mAh) battery was subjected to a discharge
experiment and a charging experiment.

load sdoBattery ExperimentData

The variables Charge_Data and DCharge_Data are loaded into the workspace. The
first column of Charge_Data contains time data. The second and third columns of
Charge_Data describe the current and voltage during a battery charging experiment.
DCharge_Data is similarly structured and contains data for a battery discharging
experiment.

Plot the Experiment Data

subplot(221),
plot(DCharge_Data(:,1)/3600,DCharge_Data(:,2))
title("Experiment: Discharge®)

xlabel ("Time (hours)*®)

ylabel ("Current (A)")

subplot(223)
plot(DCharge_Data(:,1)/3600,DCharge_Data(:,3))
xlabel ("Time (hours)*®)

ylabel ("Voltage (V)*©)

subplot(222),
plot(Charge_Data(:,1)/3600,Charge_Data(:,2))
title("Experiment: Charge®)

xlabel ("Time (hours)*®)

ylabel ("Current (A)")

subplot(224)

2-129

2 Parameter Estimation

plot(Charge_Data(:,1)/3600,Charge_Data(:,3))
xlabel ("Time (hours)*®)
ylabel ("Voltage (V)*)

Experiment: Discharge

15
— —
< 1 HIII
£ |
: |
=
3 05 |
I
0 L —
0 2 4 6
Time (hours)
15
b ___\‘
= 1 ﬁ
o |
=2 |
s |
o 0.5
~ |
I
0 L —
0 2 4 6

Time (hours)

Define the Estimation Experiments

Create a 2-element array of experiment objects to specify the measured data for the two

experiments.

Create an experiment object for the battery discharge experiment. The measured current

Voltage (V)

Experiment: Charge
0.5

0o 2 4 6
Time (hours)

1.5

0.5

0 2 4 6
Time (hours)

data is specified as a timeseries in the experiment object.

DCharge_Exp = sdo.Experiment(“sdoBattery®);

Specify the input data (current) as a timeseries object.

2-130

Estimate Model Parameters Per Experiment (Code)

DCharge_Exp. InputData = timeseries(DCharge_Data(:,2),DCharge_Data(:,1));
Create an object to specify the measured voltage output data.

VoltageSig = Simulink.SimulationData.Signal;
VoltageSig.Name "Voltage”;
VoltageSig.BlockPath "sdoBattery/SOC -> Voltage”®;
VoltageSig.PortType "outport”;
VoltageSig.-Portlndex 1;
VoltageSig-Values timeseries(DCharge_Data(:,3),DCharge_Data(:,1));

Add the voltage signal to the discharge experiment as the expected output data.

DCharge_Exp.OutputData = VoltageSig;

Specify the battery initial charge state for the experiment. The battery charge state

is modeled by the Q (Ah) block and it's initial value is specified by the variable QO.
Create a parameter for the QO variable and add the parameter to the experiment. QO is
experiment dependent and assumes different values in the discharging and charging
experiments.

Q0 = sdo.getParameterFromModel ("sdoBattery®,"Q0");
Q0.vValue = 6.5;
Q0.Free = false;

Q0.Free is set to False because the initial battery charge is known and does not need to
be estimated.

Add the QO parameter to the experiment.

DCharge_Exp.Parameters = QO;

Create an experiment object to store the charging experiment data. Add the measured
current input and measured voltage output data to the object.

Charge_Exp = sdo.Experiment("sdoBattery”);

Charge_Exp. InputData = timeseries(Charge_Data(:,2),Charge Data(:,1));
VoltageSig.Values = timeseries(Charge_Data(:,3),Charge_Data(:,1));
Charge_Exp.OutputData = VoltageSig;

Add the battery initial charge and charging loss fraction parameters to the experiment.
For this experiment, the initial charge (Q0) is known (0 Ah), but the value of the charging
loss fraction (LOSS) is not known.

Q0.value = 0;

2-131

2 Parameter Estimation

2-132

Loss = sdo.getParameterFromModel ("sdoBattery”®,"Loss");

Loss.Free

Loss.Minimum
Loss.Maximum

= true;
0;
0.5;

Charge_Exp.Parameters = [QO0;Loss];

Loss.Free is set to true so that the value of Loss is estimated

Collect both experiments into one vector.

Exp = [DCharge_Exp; Charge_Exp]:;

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the first (discharging) experiment and obtain the
simulated output.

Simulator
Simulator

createSimulator(Exp(1));
sim(Simulator);

Search for the voltage signal in the logged simulation data.

SimLog
Voltage(1)

find(Simulator.LoggedData,get_param(“sdoBattery”, "SignalLoggingName®));
find(SimLog, "Voltage®);

Obtain the simulated voltage signal for the second (charging) experiment.

Simulator
Simulator
SimLog
Voltage(2)

createSimulator(Exp(2));

sim(Simulator);

find(Simulator.LoggedData,get_param(“sdoBattery”, "SignalLoggingName®));
find(SimLog, "Voltage®);

Plot the measured and simulated data.

The model response does not match the experimental output data.

subplot(211)

plot(..-.

Voltage(1) .Values.Time/3600,Voltage(1).Values.Data,

Exp(1) -OutputData.Values.Time/3600, Exp(1).OutputData.Values.Data,"-.%)
title("Discharging Experiment: Simulated and Measured Responses Before Estimation®)
ylabel ("Voltage (V)")
legend("Simulated Voltage~®, "Measured Voltage®, "Location”, "SouthWest")
subplot(212)

plot(..-.

Estimate Model Parameters Per Experiment (Code)

Voltage(2) .Values.Time/3600,Voltage(2).Values.Data,

Exp(2) -OutputData.Values.Time/3600, Exp(2)-OutputData.Values.Data,"-.%)
title("Charging Experiment: Simulated and Measured Responses Before Estimation®)
xlabel ("Time (hours)*®)
ylabel ("Voltage (V)*)
legend("Simulated Voltage®, "Measured Voltage®, "Location”, "SouthEast")

Discharging Experiment: Simulated and Measured Responses Before Estimati
15 ;

> 4l ™]
2 3
o 1
= |
O 05} . 'l |
= Simulated Voltage |
Measured Voltage \
D i 1 Il L i 1 L —
0 1 2 3 4 5 G 7 8

Charging Experiment: Simulated and Measured Responses Before Estimatio
1.5

= ;
s [
= |
= I
S 05¢ L
= | Simulated Voltage
‘ Measured Vaoltage
D i i i L i i i
0 1 2 3 4 5 G 7 8

Time (hours)

Specify Parameters to Estimate

Estimate the values of the battery voltage V, the battery polarization resistance K, and
the charging loss fraction Loss. The V and K parameters are estimated using all the
experiment data while the LosSs parameter is estimated using only the charging data.

Select the battery voltage V and the battery polarization resistance K parameters from
the model. Specify minimum and maximum bounds for these parameters.

2-133

2 Parameter Estimation

p = sdo.getParameterFromModel ("sdoBattery”,{"V","K"});

p(1) -Minimum = O;
p(1) -Maximum = 2;
p(2) -Minimum = 1le-6;
p(2) -Maximum = le-1;

Get the experiment-specific LOSS parameter from the experiment.
s = getValuesToEstimate(Exp);

Group all the parameters to be estimated.

v = [p;s]

v(1,1) =

Name: "V~
Value: 1.2000
Minimum: O
Maximum: 2
Free: 1
Scale: 2
Info: [1x1 struct]

v(2,1) =

Name: "K*

Value: 1.0000e-03
Minimum: 1.0000e-06
Maximum: 0.1000

Free: 1
Scale: 0.0020
Info: [1x1 struct]

v(3,1) =
Name: "Loss*®
Value: 0.0100

Minimum: O
Maximum: 0.5000

2-134

Estimate Model Parameters Per Experiment (Code)

Free: 1
Scale: 0.0156
Info: [1x1 struct]

3x1 param.Continuous

Define the Estimation Objective

Create an estimation objective function to evaluate how closely the simulation output,
generated using the estimated parameter values, matches the measured data.

Use an anonymous function with one input argument that calls the
sdoBattery_Objective function. We pass the anonymous function to sdo.optimize,
which evaluates the function at each optimization iteration.

estFcn = @(v) sdoBattery Objective(v,Exp);
The sdoBattery_Objective function:
* Has one input argument that specifies the estimated battery parameter values.

+ Has one input argument that specifies the experiment object containing the measured
data.

* Returns a vector of errors between simulated and experimental outputs.

The sdoBattery_ Objective function requires two inputs, but sdo.optimize requires
a function with one input argument. To work around this, estFcn is an anonymous
function with one input argument, v, but it calls sdoBattery_ Objective using two
input arguments, v and Exp.

For more information regarding anonymous functions, see "Anonymous Functions".

The sdo.optimize command minimizes the return argument of the anonymous
function estFcn, that is, the residual errors returned by sdoBattery Objective.
For more details on how to write an objective/constraint function to use with the
sdo.optimize command, type help sdoExampleCostFunction at the MATLAB
command prompt.

To examine the estimation objective function in more detail, type edit
sdoBattery Objective at the MATLAB command prompt.

2-135

2 Parameter Estimation

2-136

type sdoBattery_Objective

function vals = sdoBattery Objective(Vv,Exp)
%SDOBATTERY_OBJECTIVE

%

% The sdoBattery_Objective function is used to compare model
% outputs against experimental data.

%

% vals = sdoBattery_Objective(v,Exp)

%

% The |v| input argument is a vector of estimated model parameter values
% and initial states.

%

% The |Exp] input argument contains the estimation experiment data.

%

% The |vals| return argument contains information about how well the

% model simulation results match the experimental data and is used by

% the |sdo.optimize| function to estimate the model parameters.

%

% See also sdo.optimize, sdoExampleCostFunction, sdoBattery cmddemo

%
% Copyright 2012 The MathWorks, Inc.

%%

% Define a signal tracking requirement to compute how well the model output
% matches the experiment data. Configure the tracking requirement so that

% it returns the tracking error residuals (rather than the

% sum-squared-error) and does not normalize the errors.

%

r = sdo.requirements.SignalTracking;

r.Type = "==";

r .Method = "Residuals”;

r.Normalize = "off";

%%

% Update the experiments with the estimated parameter values.
%

Exp = setEstimatedValues(Exp,Vv);

%%

% Simulate the model and compare model outputs with measured experiment
% data.

%

Estimate Model Parameters Per Experiment (Code)

Error = [];
for ct=1:numel (Exp)

Simulator = createSimulator(Exp(ct));
Simulator = sim(Simulator);
SimLog find(Simulator.LoggedData,get_param(“sdoBattery”, "SignalLoggingName®));

Voltage = find(SimLog, "Voltage®);
VoltageError = evalRequirement(r,Voltage.Values,Exp(ct).OutputData(l).Values);

Error = [Error; VoltageError(:)];
end

%%

% Return the residual errors to the optimization solver.
%

vals.F = Error(:);

end

Estimate the Parameters
Use the sdo.optimize function to estimate the battery parameter values.

Specify the optimization options. The estimation function sdoBattery Objective
returns the error residuals between simulated and experimental data and does not
include any constraints, making this problem ideal for the 'Isqnonlin' solver.

opt = sdo.OptimizeOptions;
opt.Method = "lIsgnonlin®;

Estimate the parameters.

vOpt = sdo.optimize(estFcn,v,opt)

Optimization started 04-Sep-2014 11:25:17

Step-size First-order

Iter F-count) optimality
0 7 3272.22 1
1 14 619.356 0.1634 3.15e+05
2 21 411.131 0.2175 28.7
3 28 405.529 0.3838 2.16e+03
4 35 403.727 0.2767 15.2
5 42 403.379 0.1645 1.14e+03

2-137

2 Parameter Estimation

Local minimum possible.

Isgnonlin stopped because the final change in the sum of squares relative to

its initial value is less than the selected value of the function tolerance.
vopt(1,1) =
Name: "V~

Value: 1.3083
Minimum: O
Maximum: 2

Free: 1
Scale: 2
Info: [1x1 struct]
vopt(2,1) =
Name: "K*

Value: 0.0010
Minimum: 1.0000e-06
Maximum: 0.1000

Free: 1
Scale: 0.0020
Info: [1x1 struct]
vOpt(3,1) =
Name: "Loss*®

Value: 5.1801e-05
Minimum: O
Maximum: 0.5000

Free: 1
Scale: 0.0156
Info: [1x1 struct]

3x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

Update the experiments with the estimated parameter values.

2-138

Estimate Model Parameters Per Experiment (Code)

Exp = setEstimatedValues(Exp,vOpt);

Obtain the simulated output for the first (discharging) experiment.

Simulator = createSimulator(Exp(1));

Simulator = sim(Simulator);

SimLog = Ffind(Simulator._LoggedData,get_param(“sdoBattery”, "SignalLoggingName®));
Voltage(1) = find(SimLog, "Voltage®);

Obtain the simulated output for the second (charging) experiment.

Simulator = createSimulator(Exp(2));

Simulator = sim(Simulator);

SimLog = Ffind(Simulator.LoggedData,get_param(“sdoBattery”, "SignalLoggingName®));
Voltage(2) = find(SimLog, "Voltage®);

Plot the measured and simulated data.

The simulation results match the experimental data well except in the regions when
the battery is fully charged. This is not unexpected as the simple battery model does not
model the exponential voltage drop when the battery is fully charged.

subplot(211)
plot(..-.

Voltage(1) -Values.Time/3600,Voltage(l).Values._Data,

Exp(1) -OutputData.Values.Time/3600, Exp(1)-OutputData.Values.Data,"-.%)
title("Discharging Experiment: Simulated and Measured Responses After Estimation®)
ylabel ("Voltage (V)*©)
legend("Simulated Voltage~®, "Measured Voltage®, "Location”, "SouthWest")
subplot(212)
plot(..-.

Voltage(2) -Values.Time/3600,Voltage(2).Values._Data,

Exp(2) -OutputData.Values.Time/3600, Exp(2)-OutputData.Values.Data,"-.%)
title("Charging Experiment: Simulated and Measured Responses After Estimation®)
xlabel ("Time (hours)*®)
ylabel ("Voltage (V)*©)
legend("Simulated Voltage~®,"Measured Voltage®", "Location”, "SouthEast")

2-139

2 Parameter Estimation

Discharging Experiment: Simulated and Measured Responses After Estimatic
1.5 T

2 1t Y :
a \
o
=
O 05f L
= Simulated Vaoltage
Measured Voltage
D i i 1 L i Ill. i 1
0 1 2 3 4 5 G 7 8

Charging Experiment: Simulated and Measured Responses After Estimation
1.5

=t / :
1B
& |
Sost |
O 05f L
= Simulated Voltage
‘ Measured Voltage
D i i 1 L i i 1
0 1 2 3 4 5 4] 7 8

Time (hours)

Update the Model Parameter Values
Update the model V, K, and Loss parameter values.
sdo.setValuelnModel ("sdoBattery”,vOpt);

Related Examples

To learn how to estimate the battery parameters using the Parameter Estimation Tool,
see “"Estimate Model Parameters Per Experiment (GUI)".

Close the model

bdclose("sdoBattery™)

2-140

Estimate Model Parameters with Parameter Constraints (Code)

Estimate Model Parameters with Parameter Constraints (Code)

This example shows how to estimate model parameters while imposing constraints on
the parameter values.

You estimate dynamic and static friction coefficients of a simple friction system.
Open the Model and Get Experimental Data
This example estimates parameters for a simple friction system, sdoFriction. The

model input is the force applied to a mass and the model outputs are the mass position
and velocity.

open_system(“sdoFriction®);

Friction Model

== 1.4001 .03

Copyright 2012 The MathWerds, Inc.

S e 0 e ® s [e oy < Y By : L
_ oR = g e
Applied Foroe 4 . : .
Positon
x_dot ®
x
k
o Velocity
e, Static Friction DynamicFriCtiGl'l
L=
mg

Mormal Force:

The model is based on a mass sliding on a surface. The mass is subject to a static friction
that must be overcome before the mass moves and a dynamic friction once the mass
moves. The static friction, u_static, is a fraction of the mass normal force; similarly the
dynamic friction, u_dynamic, is a fraction of the mass normal force.

Load the experiment data. The mass was subjected to an applied force and its position
recorded.

2-141

2 Parameter Estimation

load sdoFriction_ExperimentData

The variables AppliedForce, Position, and Velocity are loaded into the workspace.
The first column of each of these variables represents time and the second column
represents the measured data. Because velocity is the first derivative of position, we only
use the position measurements for this example.

Plot the Experiment Data

subplot(211),

plot(AppliedForce(:,1),AppliedForce(:,2))

title("Measured Applied Force Input for Simple Friction System®);
ylabel ("Applied Force (N)°)

subplot(212)

plot(Position(:,1),Position(:,2))

title("Measured Mass Position for Simple Friction System®);
xlabel ("Time (seconds)®)

ylabel ("Position (m)*)

2-142

Estimate Model Parameters with Parameter Constraints (Code)

Measured Applied Force Input for Simple Friction System
15 T]

10} -

Applied Force (N)

0 1 1
0 5 10 15

Measured Mass Position for Simple Friction System
150 i ;

100 ¢ —— :

Fosition {m)
,

0 L :
0 5 10 15

Time (seconds)

Define the Estimation Experiment

Create an experiment object to specify the experiment data.

Exp = sdo.Experiment(“sdoFriction®);

Specify the input data (applied force) as a timeseries object.
Exp.InputData = timeseries(AppliedForce(:,2),AppliedForce(:,1));
Create an object to specify the measured mass position output.

PositionSig = Simulink.SimulationData.Signal;

2-143

2 Parameter Estimation

"Position”;

"sdoFriction/x";

"outport®;

1;
timeseries(Position(:,2),Position(:,1));

PositionSig-Name
PositionSig.BlockPath
PositionSig.-PortType
PositionSig.Portindex
PositionSig.-Values

Add the measured mass position data to the experiment as the expected output data.
Exp.OutputData = PositionSig;

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the experiment and obtain the simulated output.

Simulator
Simulator

= createSimulator(Exp);
= sim(Simulator);

Search for the position signal in the logged simulation data.

SimLog
Position

find(Simulator.LoggedData,get_param(“sdoFriction”, "SignalLoggingName™));
find(SimLog, "Position™);

Plot the measured and simulated data.

As expected, the model response does not match the experimental output data.

figure

plot(...
Position.Values.Time,Position.Values.Data, ...
Exp.OutputData.Values.Time, Exp.OutputData.Values.Data,"-.")

title("Simulated and Measured Responses Before Estimation®)

ylabel ("Position (m)")

xlabel ("Time (seconds)™)

legend("Simulated Position”, "Measured Position”, "Location”, "NorthWest")

2-144

Estimate Model Parameters with Parameter Constraints (Code)

Simulated and Measured Responses Before Estimation
300 T T

Simulated Position
Measured Position

250+

200

150

Fosition {m)

100

50

D -"'—"'-.- L i
0 5 10 15

Time (seconds)

Specify Parameters to Estimate

Estimate the u_static and u_dynamic friction coefficients using the experiment data.
These coefficients are used as gains in the Static Friction and Dynamic Friction
blocks, respectively. Physics indicates that friction coefficients should be constrained

so that u_static = u_dynamic; this parameter constraint is implemented in the
estimation objective function.

Select the u_static and u_dynamic model parameters. Specify bounds for the
estimated parameter values. Both coefficients are limited to the range [0 1].

p = sdo.getParameterFromModel ("sdoFriction®,{"u_static”, u_dynamic"});

2-145

2 Parameter Estimation

2-146

p(1) -Minimum = O;
p(1) -Maximum = 1;
p(2) -Minimum = O;
p(2) -Maximum = 1;

Define the Estimation Objective

Create an estimation objective function to evaluate how closely the simulation output,
generated using the estimated parameter values, matches the measured data.

Use an anonymous function with one input argument that calls the
sdoFriction_Objective function. We pass the anonymous function to
sdo.optimize, which evaluates the function at each optimization iteration.

estFcn = @(Vv) sdoFriction_Objective(v,Exp);
The sdoFriction_Objective function:
* Has one input argument that specifies the estimated friction coefficients.

+ Has one input argument that specifies the experiment object containing the measured
data.

* Returns the sum-squared-error errors between simulated and experimental outputs,
and returns the parameter constraint.

The sdoFriction_Objective function requires two inputs, but sdo.optimize
requires a function with one input argument. To work around this, estFcn is an
anonymous function with one input argument, v, but it calls sdoFriction_Objective
using two input arguments, vV and EXp.

For more information regarding anonymous functions, see "Anonymous Functions".

The sdo.optimize command minimizes the return argument of the anonymous
function estFcn, that is, the residual errors returned by sdoFriction_Objective.
For more details on how to write an objective/constraint function to use with the
sdo.optimize command, type help sdoExampleCostFunction at the MATLAB
command prompt.

To examine the estimation objective function in more detail, type edit
sdoFriction_Objective at the MATLAB command prompt.

Estimate Model Parameters with Parameter Constraints (Code)

type sdoFriction_Objective

function vals = sdoFriction_Objective(p,Exp)
%SDOFRICTION_OBJECTIVE
%

% The sdoFriction_Objective function is used to compare model
% outputs against experimental data and measure how well constraints are
% satisfied.

%
% vals = sdoFriction_Objective(p,Exp)
%

% The |p| input argument is a vector of estimated model parameter values.
%

% The |Exp] input argument contains the estimation experiment data.

%

% The |vals| return argument contains information about how well the

% model simulation results match the experimental data and how well

% constraints are satisfied. The |vals| argument is used by the

% |sdo.optimize| function to estimate the model parameters.

%

% See also sdo.optimize, sdoExampleCostFunction, sdoFriction_cmddemo

%
% Copyright 2012 The MathWorks, Inc.

%%

% Define a signal tracking requirement to compute how well the model output
% matches the experiment data. Configure the tracking requirement so that

% it returns the sum-squared-error.

%

r = sdo.requirements.SignalTracking;

r.Type = "==7;

r.Method = "SSE";

%%

% Update the experiments with the estimated parameter values.
%

Exp = setEstimatedValues(Exp,p);

%%

% Simulate the model and compare model outputs with measured experiment
% data.

%

Simulator = createSimulator(Exp);

2-147

2 Parameter Estimation

2-148

Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get_param("sdoFriction®, "SignalLoggingName®))

Position = find(SimLog, "Position®);
PositionError = evalRequirement(r,Position.Values,Exp.OutputData(l).Values);

%%

% Measure how well the parameters satisfy the friction coefficient constraint,
% Ju_static|] >= Ju_dynamic|. Note that constraints are returned to the

% optimizer in a c <=0 format. The friction coefficient constraint is

% rewritten accordingly.

PConstr = p(2).Value - p(1).Value; % u_dynamic - u_static <= 0

%%

% Return the sum-squared-error and constraint violation to the optimization
% solver.

%

vals.F = PositionError(:);
vals.Cleq = PConstr;
end

The friction coefficient constraint, u_static = u_dynamic, is implemented in the
sdoFriction_Objective function as u_dynamic - u_static = 0. This is because the
optimizer requires constraint values in a ¢ = (} format. For more information, type help
sdo.optimize at the MATLAB command prompt.

Estimate the Parameters
Use the sdo.optimize function to estimate the friction model parameter values.

Specify the optimization options. The estimation function sdoFriction_Objective
returns the sum-squared-error between simulated and experimental data and includes a
parameter constraint. The default 'fmincon’' solver is ideal for this type of problem.

Estimate the parameters.

pOpt = sdo.optimize(estFcn,p)

Optimization started 04-Sep-2014 11:26:16

max Step-size First-order
Iter F-count) constraint optimality

’

Estimate Model Parameters with Parameter Constraints (Code)

5
11
15
22
29
34
39
44
49
60
10 72
11 91
12 108

O©CoO~NOUAWNEO

27.7267
22.5643
17.4771
0.762174
0.40765
0.0254254
-00522001
-00398126
-00120167
-00118106
-00110164
-00110097
-00110097

cNeoNoNoNeoNoNe]

eNeoNoNoNoNoNoleooNoNoNoNe)

2.21
0.51
1.33
0.263
0.0897
0.0296
0.0209
0.111
0.0212
0.0262
0.0031
0.00165

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the selected value of the step size tolerance and constraints are
satisfied to within the selected value of the constraint tolerance.

pOpt(1,1) =

Name:
Value:
Minimum:
Maximum:
Free:
Scale:
Info:

popt(2,1) =

Name:
Value:
Minimum:
Maximum:
Free:
Scale:
Info:

"u_static”
0.7973
0
1
1

0.5000
[1x1 struct]

"u_dynamic*®
0.4021
0
1
1

0.2500
[1x1 struct]

2x1 param.Continuous

72.9
16
10.7
3.15
1.22
0.276
0.185
0.17
0.173
0.165
0.174
0.174

2-149

2 Parameter Estimation

Compare the Measured Output and the Final Simulated Output

Update the experiments with the estimated parameter values.

Exp = setEstimatedValues(Exp,pOpt);

Obtain the simulated output for the experiment.

Simulator = createSimulator(Exp);

Simulator = sim(Simulator);

SimLog = Find(Simulator.LoggedData,get_param(“sdoFriction”, "SignalLoggingName®));
Position = find(SimLog, "Position®);

Plot the measured and simulated data.

It can be seen that the model response using the estimated parameter values nicely
matches the experiment output data.

plot(..-.

Position.Values.Time,Position.Values.Data,

Exp.OutputData.Values.Time, Exp.OutputData.Values.Data,"-.")
title("Simulated and Measured Responses After Model Parameter Estimation®)
ylabel ("Position (m)*)
xlabel ("Time (seconds)®)
legend("Simulated Position®, "Measured Position®, "Location”, "NorthWest")

2-150

Estimate Model Parameters with Parameter Constraints (Code)

Simulated and Measured Responses After Model Parameter Estimation
120 T T

Simulated Position
Measured Position

100 + -

80

60

Fosition {m)

T
e
1

40

20

T
e,
L

D . = L i
0 5 10 15

Time (seconds)

Update the Model Parameter Values

Update the model u_static and u_dynamic parameter values.

sdo.setValuelnModel ("sdoFriction”,pOpt);

Close the model

bdclose("sdoFriction™)

2-151

2 Parameter Estimation

Estimate Model Parameter Values (GUI)

This example shows how to use experiment data to estimate model parameters. You
estimate the parameters of an engine throttle system.

Simulink® Model of the Engine Throttle System

The Simulink® model for the engine throttle system, spe_engine_throttle, is shown
below.

Engine Throttle Model

imate in
to run an estimation.

Copyright (¢} 2002-2014 The Math\orks, Inc.

Throttle Model Description

The throttle controls the air mass flow into the intake manifold of an engine. The
throttle body contains a butterfly valve that opens when the driver presses down on the
accelerator pedal. This lets more air enter the cylinders and causes the engine to produce
more torque.

A DC motor controls the opening angle of the butterfly valve. There is also a spring
attached to the valve to return it to its closed position when the DC motor is de-

2-152

Estimate Model Parameter Values (GUI)

energized. The amount of rotation of the valve is limited to approximately 90 degrees.
Therefore, if a large command input is applied to the motor, the valve hits the hard stops
preventing it from rotating further.

The motor is modeled as a torque gain and a time-delay input with parameters Kt

and input_delay. The butterfly valve is modeled as a mass-spring-damper system with
parameters J, ¢ and k. This system is augmented with hard stops to limit the valve
opening to 90 degrees. We know the model components, however, the parameter values of
the system are not known accurately.

Estimation Experiment Data

Double-click the Parameter Estimation GUI with preloaded data block in the
model to open a pre-configured estimation GUI session.

The saved estimation project defines three experiments; the EstimationData
experiment will be used for parameter estimation, while Val idationDatal,
ValidationData2 are used for validating the estimated parameters. The
EstimateData experiment is plotted.

The signal data for the experiments can be imported from various sources including

MATLAB® variables, MAT files, Excel® files, or comma-separated-value files. See
“Tmporting and Preprocessing Experiment Data (GUI)" for more information.

2-153

2 Parameter Estimation

PARAMETER ESTIMATION WVALIDATION EXPERIMENT PLOT

Data Browser
w Pararneters
J speJlgIrHJe%%HP}'ﬁro @1
. 100
input_delay
N . AN
60
w Experiments /
[EstimationData “
ValidationDatal o
ValidationData2
2 1]
2
—E spegngine,nromerlnput 1
w Results <
0.8
0.6
0.4
w Preview |
0.2
-
i - o
Measured output signalfs): H [005 01 015 02 025 03 035 0.4 045 05
- . Time (seconds)
spe_engine_throttle/Throttle:l

The experiment plot is also used to see how well the measured data matches the current
model. Click Plot Model Response to display simulated signal data on the experiment
plots.

2-154

Estimate Model Parameter Values (GUI)

PARAMETER EETIMATION VALDATION EXPERIMENT PLOT ElIEPEET 0] ©
=
E Open Session * % E E L_I-m Cost Function: Sum Squared Error D
5] save session » _ Select New Ssect AddPht PlotModel) pore Optons Estimate
F - -
FILE | PARAMETERS | EXPERIMENTS | PLOT | OPTIONS | ESTIMATE |
Data Browser] | Experiment plot: EstimationData ¢ |

w Parameters
il spe, ndPr%”ﬁ%H@‘?n?&'ﬂ‘m

c

input_delay /_, -
k “ —
o
¥ Experiments / p —
40 =

EstimationData —
ValidationDatal —
ValidationData2 —

Measured
Madel parameter values

spe,ngi ne:nroltlr.\.-‘l nput:1

Amplitude

¥ Results

=
m

o
ks

¥ Preview

=i
ha

=

-

Measured ocutput signal(s): ‘

0 0.05 0.1 0.15 0.2 0.25 0.3

Time (seconds)

=}
w
&
=}
o
=3
5
tn
=}
tn

spe_engine_throttle/Throttle:l

The simulation results show that the model does not match the measured data and that
model parameters need to be estimated.

Estimated Parameters

The next step is to define the parameter to estimate. Click Select Parameters to open
a dialog to select model parameters to estimate. In this example we have preselected the
four unknown parameters; the butterfly valve inertia, J; the damping coefficient, c; the
return spring constant, k; and the time lag in motor response, input_delay.

2-155

2 Parameter Estimation

FParameters Tuned for all Experiments

1

b |0.05] ~| B} % U Estimate
L

B 40 - @ % [Estimate
input dela

B 002 - @. % [Estimate
k

P |1 - @ "4 Estimate

E Select parameters

Parameters and Initial States Tuned per Experiment

Experiment: | EstimationData * |

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

Edit experiment

B3] Update Model &7 0K (@) Help

2-156

Estimate Model Parameter Values (GUI)

Since we know from physical insight that all of these parameters have positive

values, we set their lower limits to zero. We also put an upper bound of 0.1 sec on the
input_delay parameter. We can also select an initial value for the parameters. These
may come from some quick calculations of some formulas that determine the parameters.

Click the right arrow toggle button to modify the parameter minimum and maximum
bounds.

2-157

2 Parameter Estimation

FParameters Tuned for all Experiments

]
¥ [0.05 ~| B} % [Estimate
bAinimum: |0 - @
baximum: | Inf - @
Scale: |0.05 ~| B2
[d
B 40 - @ w [Estimate
input dela
b 0.02 - @ w [Estimate
k
k(1 - @ % [Estimate

E Select parameters

Parameters and Initial States Tuned per Experiment

Experiment: |E5timatinnData "'|

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

2-158

Estimate Model Parameter Values (GUI)

The Estimation Task

With the parameters for estimation selected we select experiments to use for estimation.
Click Select Experiments and select EstimationData for estimation.

Select experiments to include for estimation or validation

Estimation Validation Experiment

[l EstimationData
[l [l WalidationDatal EI,}I
[l [l ValidationData2

& OK @ Help

We are now almost ready to start our estimation but first create plots to monitor the
estimation progress. Click Add Plot and select Parameter Trajectory. This creates
a plot that shows how the estimated parameter values change during estimation. Click
the View tab to layout the plots so that the Experiment plot:EstimationData and
Iteration plot 1 are both visible.

2-159

2 Parameter Estimation

PARAMETER ESTIMATION VALIDATION EXPERIMENT PLOT P 6] ©
=
E Open Session = % E E E Cost Function: Sum Sguared Error = D

(5] save session » _ Sekect New Select AddPht PlotModel (&) yyore options Estimate
F | E - -
FILE | PARAMETERS | EXPERIMENTS | PLOT | OPTIONS | ESTIMATE |

Data Browser ® _J Experiment plot: EstimationData 7 | Iteration plotl |

w Parameters

1 spc"nél? f.y %ﬁ‘gﬁtﬁg}ﬁcﬂ 400 =i A
¢ 100
input_del 2, !
input_delay -
. 8o /\./”“ el —O— input_delay
—8—k
&0
b

w Experiments
EstimationData
ValidationDatal

ValidationData2 = 25
g ¢ 2,1
3 spe,_ngine,hrottie/Input:1 &
E
w Results £ 1 I I I |
Measured 151
i | Model parameter values
0.6 wl
04
¥ Preview 51
0.2
-
j H i L i i J
Measured output signal(s): : LC- 0.1 0.2 0.3 0.4 05 0 B 7 & 5 0
- Time (seconds) Iteration

spe_engine_throttle/Throttle:l

Click the Estimate button to start the estimation. You can modify estimation options by
setting the Cost Function combobox and clicking More Options....

While the estimation is running the plots update and a dialog showing estimation

progress appears. The progress dialog shows the estimation iterations, the number of
times the model has been evaluated (F-count), and the estimation cost at each iteration.

2-160

Estimate Model Parameter Values (GUI)

PARAMETER ESTIMATION

Data Browser Experiment plot: EstimationData Iteration plot1 =
w Parameters
] e AR IBRER: o Estmatctaams
c 100
input_delay
. a0 N
60
w Experiments /
EstmationDate ||
ValidationDatal o /
ValidationData2 —
g’ I
% spe=ngins‘hrut1leflnput‘1 g
w* Results | E 1
08
Measured
06 1 Model parameter values
0.4
w Preview |
0.2
-
Wame: 'J7
. o
Value: 0.2277 [0.1 0.2 0.3 0.4 05
Minimum: 0 Time (seconds)
Maximum: Inf i

2-161

2 Parameter Estimation

[teration | F-count EstimationData
(Minimize)
0 9 32.04 ~
1 18 12.30) |
2 27 3.65/=
3 36 1.13
4 45 0.66—
5 54 0.32
[63 0.11
T T2 0.02
8 21 0.00
9 50 0.00
10 99 0.00
11 108 0.00 -
4| 1 | »
Optimization started 21-Apr-2014 16:50:09 -
=
Estimaticn converged, 21-Apr-2014 16:52:25
Estimated experiment values written to the workspace L
| Save heration...| |Display Options...| | Estimate |

After a number of iterations the estimation converges and terminates. The model is
updated with the estimated parameters and the estimation results are saved in the
data browser. Right click EstimatedParams and select Open... to see details of the
estimation result.

2-162

Estimate Model Parameter Values (GUI)

Estimation result(s): |
1=0.22774
c = 89489
input_delay = 0.0097738
k= 17661

Parameters estimated using experiments:
- EstimationData, cost = 0.006554%

m

Solver output:

Cost: 0.0065549
ExitFlag: 3
FCount: 307
Date: 21-Apr-2014 17:03

Solver termination message:
Local minimum possible,

lsgnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the selected value of the function tolerance.

-

H use as initial guess [Bal Update Model & OK

Validation
It is important to validate the estimation results against other experiments. A successful

estimation will not only match the experimental data that was used for estimation but
also other independent measured data that were collected in experiments.

2-163

2 Parameter Estimation

Click the Validation tab and click Select Experiments to select experiments for
validation. Select both ValidationDatal and Val idationData2 for validation.

Select experiments to include for estimation or validation

Estimation Validation Experiment
EstirationData Z
ValidationDatal e
ValidationData2

& OK @ Help

Click Select Results to select the estimation result(s) to use for validation. Select
EstimatedParams and deselect Use current parameter values.

Select results to include in validation
Results

Use current parameter values
EstimatedParams

Click Validate to validate the estimation result against the validation experiments.
Validation simulates the model using the estimated parameters and selected
experiments and creates plots showing the measured and simulation data. Use the

2-164

Estimate Model Parameter Values (GUI)

View tab to layout the plots so that the Experiment plot:ValidationDatal and
Experiment plot:ValidationDataZ2 are both visible.

PARAMETER ESTIMATION WALDATION EXPERIMENT PLOT VEW

2 & =z b
New

Select Select Validate

EXPERIMENTS RESULTS | VALIDATE
Data Browser @ 1 | Experiment plot: ValidationDatal | i+ Experiment plot: ValidationData2 0
Ew S -

w Parameters
c 100 100

Measured Measured

t_del) o, Eafi P,

::1pu _delay o M‘ . ““’"“’L 1 /\ ‘ I ulﬂlllSL

80 \\ 60 \\\"\
w Experiments / M / __k

s ~ | ==
ValidationDatal o o
ValidationData2 -y —y
@ 0 e 0
= =
b= specnglne_hronlm'lnpum b= spccnglne_hronlm'\npmﬂ
E E -
¥ Results < 1 z !
EstimatedParams
0.8 0.8
06 06
04 0.4
w Preview |
0.2 02
-
Wame: "J'
. 0 0
Value: 0.0500 0 01 0.2 03 0.4 05 0 0.1 0.2 03 0.4 05
Minimum: 0 Time (seconds) Time (seconds)

Maximum: Inf

The valdiation plots confirm that our estimation was successful, showing that the
estimated parameters are robust enough to handle a variety of inputs.

Related Examples

To learn how to estimate model parameters using the sdo.optimize command, see
“"Estimate Model Parameter Values (Code)" .

Close the model

2-165

2 Parameter Estimation

Estimate Model Parameters Per Experiment (GUI)

This example shows how to use multiple experiments to estimate a mix of model
parameter values; some that are estimated using all the experiments and others that
are estimated using individual experiments. The example also shows how to configure
estimation experiments with experiment dependent parameter values.

You estimate the parameters of a rechargeable battery based on data collected in
experiments that discharge and charge the battery.

Open the Model and Get Experimental Data

This example estimates parameters of a simple, rechargeable battery model,
sdoBattery. The model input is the battery current and the model output, the battery
terminal voltage, is computed from the battery state-of-charge.

open_system("sdoBattery");

Simple Battery Model

CO——— > [l >je0e =

“whltage I

Cument

Voltage [V}

S0OC = \oltage

Copyright 2012-2014 The MathWarks, Inc.
The model is based on the equation
1 —=s

f‘: = IJ .Ir.I'J."i_'.':l ¥ " 'h- r rJll'fl.' *

Where:

2-166

Estimate Model Parameters Per Experiment (GUI)

* I is the battery terminal voltage in Volts.
* V is the battery constant voltage in Volts.

+ I is the battery polarization resistance in Ohms.

(Jimar is the maximum battery capacity in Ampere-Hour.

+ s1is the battery charge state, with 1 being fully charged and 0 zero charge.The battery
state-of-charge is computed from the integral of the battery current with a +ve
current indicating discharge and a -ve current indicating charging. The battery initial

state-of-charge is specified by (0 in Ampere-Hour.

* Luoss is the voltage drop when charging, expressed as a fraction of the battery
constant voltage. When the battery is discharging this value is zero.

V, K, Qmax, QO0, and Loss are variables defined in the model workspace.

Estimation Experiment Data

A 1.2V (6500mAh) battery was subjected to a discharge and a charging experiment. This
experiment data has been loaded into a preconfigured estimation tool session.

From the sdoBattery model click Analysis and select the Parameter Estimation...
menu item to launch the Parameter Estimation tool. From the Parameter Estimation
tool click Open Session and select Open from model workspace and open the
sdoBattery sdosession session. The measured charge and discharge experiment data
are loaded and plotted.

Click the View tab to layout the plots so that the Experiment plot:Charge_Exp and

Experiment plot:DCharge Exp are both visible. Click Plot Model Response to see
how well the model simulation matches the measured experiment data.

2-167

2 Parameter Estimation

PARAMETER ESTIMATION

WVALDATION

EXPERIMENT PLOT

VEW

Time (seconds)

Time (seconds)

=
E Open Session = % E E Cost Function: Sum Sguared Error = D
(5] save session » _ Sekect New Select AddPht PlotModel (&) yyore options Estimate
F - -
FILE | PmMEERSl EXPERIMENTS PLOT | OPTIONS | ESTIMATE —
Data Browser ® _J Experiment plot: Charge_Exp 0 | Experiment plot: DCharge_Exp |
w Parameters
xoBL%%g'ﬂE -?‘D@Eﬁageﬂ MOBL%%%‘&E -Peciﬁageﬂ
RS 1.4
—J* — —
| 1.2 [\
1
1 |
0.8
w Experiments N]
0.6 |
Charge_Exp 05 |
;) L
DCharge_Exp (e [
Measured 02 Measured
Model parameter values Model parameter values
e 0 T I T a 0 - T
5]
=] 2
E Cuirent EL Current
¥ Results < 02 < 14
N
0 1.2
1 1
-0.2 \
0.8
04 |
06
- -0.6 l
W Preview 0.4
08 i \
| . \
0.5 1 1.5 2 2.5 0.5 1 1.5 2 25

The plots show that the battery initial charge QO is not set correctly for the Charge_ Exp

experiment and that the model V, K, and Loss parameters need to be estimated.

Setting Experiment Parameter Values

The previous plot indicates that the Charge_ Exp battery initial charge, QO, is not set
correctly. Add the initial charge to both experiments.

Right click Charge_Exp and select Edit.... A dialog to edit the experiment opens.

2-168

Estimate Model Parameters Per Experiment (GUI)

Edit Experiment: Charge B
Outputs
Define measured output signals for this experiment.

sdoBattery/SOC -»> YVaoltage:l (sdoBattery/SOC -»> Yaltage:1]
| <1x1 Signal, 1351 points> | B 4 X

@ select Meaured Qutput Signals

Inputs
Optionally define inputs signals for this experiment.
sdoBattery/Current:l (Current)

| <1x1 Signal, 1351 points>| | B & X

@ select Inputs

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

Select Initial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment.

E Select Parameters

[el Piot & Simulate | Pt &7 0K (P) Help

2 Parameter Estimation

Click Select Parameters to open a dialog to add model parameters to the experiment.
Select Loss and QO to add to the experiment. Select LOSS as we need to estimate this
parameter using only the Charge_Exp experiment. Click Ok to add the QO and Loss
parameters to the experiment.

Filter by wariable narne P
w | Variable | Currentv... Used By
K 0.001 |sdoBattery/S0OC -= Vaoltage -
Loss 0.0m sdoBattery/SOC -= Voltage
i 8.5 -
cdoBatteny/Q (Ah)
Qmax 6.5 sdoBattery/Q-=50C | &
cdoBattery/SOC -=» Voltage/Qrmax*{l-s1//c

P Specify expression indexing if necessary (e.g,, al(3) or s.x)

ﬂ? OK 83 Cancel @ Help

Set the battery initial charge QO in the Charge EXp to 0, i.e. there is no initial charge.

2-170

Estimate Model Parameters Per Experiment (GUI)

Outputs
Define measured output signals for this experiment.

sdoBattery/50OC -= Voltage:l [sdoBatteny/SOC -> Voltage:l]

| <1x1 Signal, 1351 points> - B 4 X

@, select Meaured Output Signals

Inputs
Optionally define inputs signals for this experiment.

sdoBattery/Current:1 [Current]
| <1x1 Signal, 1351 points> - B 4 X

@ select Inputs

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

Select Initial States

Parameters
Cptionally define parameters for this experiment.
Loss

b 001 =
(0[]

P |0 | BB X

E, Select Parameters

2 Parameter Estimation

Similarly add the battery initial charge QO to the DCharge_ EXp experiment and set the
initial charge to 6.5., i.e. for this experiment there is an initial charge.

2-172

Estimate Model Parameters Per Experiment (GUI)

Edit Experiment: DCharge B
Outputs
Define measured output signals for this experiment.

sdoBattery/50OC -= Voltage:l [sdoBatteny/SOC -> Voltage:l]

| <1x1 Signal, 1351 points> - B 4 X

@, select Meaured Output Signals

Inputs
Optionally define inputs signals for this experiment.

sdoBattery/Current:1 [Current]
| <1x1 Signal, 1351 points| - B 4 X

@ select Inputs

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

Select Initial States

Parameters
Cptionally define parameters for this experiment.
Q0

b |65 =

E select Parameters

Fol Plot & Simutate [A Plot e 0Kk (@) Help

2 Parameter Estimation

Now that the experiements are updated with the correct initial battery charge click Plot
Model Response to simulate the model and compare measured and simuated data.

= a —
PARAMETER ESTIMATION VALDATION EXPERIMENT PLOT == E & s Sl = @
2 2 W3 Iz >
'g Open Session « % "" Cost Function: Sum Sguared Error «
Save Session Select New Select Add Piot Plot Model M Estimate
a o r Experment Exper R @ ore Optons. :
FILE | PARAMETERS | EXPERIMENTS | FLOT | OPTIONS | ESTIMATE |
Data Browser] | Experimentplot Charge_Exp 7 | _J Experiment plot: DCharge_Exp ¢
¥ Parameters
xoBlar!'E:\"rlkg%E”}*D@&age:l sdoalarl'&%glﬁeu-t?%cﬁageﬂ
1.5 1.4
—J* |
L 12 W
T B 1
‘ |
I'I 0.8
w Experiments -]I
0.6
Charge_Exp 05 |
0.5 . |
DCharae Exo b 1
— Measured 0.2 Measured
— Model parameter values Model parameter values
a 0 T I T e 0 T T T T
b=} - = o
] 5
=] 2
EL Cusrent E Current
w Results g 02 < 14]
o 1.2
-0.2
0.8
1
0.6
¥ Preview 0.4
- 0.8 02 \\
Heasured cutput signal(s): ‘E " 0.5 1 15 2 25 3 0.5 1 15 2 25 3
- sdoBattery/SOC -> W Time (seconds) <104 Time (seconds) «10%
Voltage:1l Measured input i

The experiment plots show that the experiment initial conditions match but the battery
response does not. The next step is to estimate the K and V model parameters.

Select Estimation Parameters

The previous plot showed that the model response does not match the measured data and
we need to etimate the model V and K parameters.

Click Select Parameters to open a dialog to select model parameters.

2-174

Estimate Model Parameters Per Experiment (GUI)

Parameters Tuned for all Experiments
There are no parameters selected for estimation.

E Select parameters

Parameters and Initial 5tates Tuned per Experiment

Experiment: | Charge_Exp ~ |

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

Loss
001 - @ Estimate
Qo
B (O - E} Estimate

Edit experiment

3] Update Model &7 OK () Help

The upper portion of the select parameters dialog has a section for parameters that
are tuned using all experiments. Click Select Parameters and add the V and K model

2-175

2 Parameter Estimation

parameters to the estimated parameters. Set the V minimum to 0 and the maximumn to
2, similarly set the K minimum to 1le-6 and maximum to 0.1.

2-176

Estimate Model Parameters Per Experiment (GUI)

Parameters Tuned for all Experiments

K
E 0.001 ~| B % [Estimate
Minimum:|le-ﬂ5 "’| @
Maximum:|ﬂ.1 "’| @
Scale: | 0.001953125 ~| B
v
- [1.2 - @ % [@ Estimate
Minimum: |0 "’| @
Maximum: | 2 - @

Scale: | 2 - @

E Select parameters

Parameters and Initial States Tuned per Experiment

Experiment: | Charge Exp = |

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

—

055

0.01 - | H Estimate

v I8 -r|

0 v| B3 Estimate

E Edit experiment

2 Parameter Estimation

The lower section of the dialog has a section for initial states and parameters that are
tuned using individual experiments.

For the Charge_ EXxp we tune the LOSs parameter and set its minimum to 0 maximum

to 0.5. The battery initial charge QO is fixed to 0 and should not be estimated; uncheck
Estimate.

2-178

Estimate Model Parameters Per Experiment (GUI)

Parameters Tuned for all Experiments
K

b 0.001 - @ » Estimate
v
B |1.2 - @ » Estimate

E Select parameters

Parameters and Initial States Tuned per Experiment

Experiment: | Charge Exp ~ |

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

Loss
w (0.01 "'| @- Estimate
Minimum:lﬂ "’| @
Maximum:lﬂ.E "’| @
Scale: |0.015625 ~| B
Qo
|0 ~| B ™ Estimate

Edit experiment

5] Update Model & 0K (?) Help

2 Parameter Estimation

Select DCharge_ Exp from the Experiment combobox to view the parameter settings for
the DCharge_Exp experiment. The battery initial charge QO is fixed to 6.5 and should
not be estimated; uncheck Estimate

Parameters Tuned for all Experiments
K

b (0.001 - @ » Estimate

v
P 1.2 - E; % [Estimate

E, Select parameters

Parameters and Initial States Tuned per Experiment

Experiment: | DCharge_Exp * |

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

Qo
b 65 ~| B2 Estimate

Edit experiment

5] Update Model & OK () Help

Estimate Parameter Values

2-180

Estimate Model Parameters Per Experiment (GUI)

The experiments and estimated parameters are configured and we a ready to run the
estimation. First create a plot to monitor the estimation progress. Click Add Plot
and select Parameter Trajectory. This creates a plot that shows how the estimated
parameter values change during estimation. Click the View tab to layout the plots so
that the experiment and parameter trajectory plots are all visible.

PARAMETER ESTMATION VALIDATION EXPERMENT PLOT EGamliace
ﬁ Open Session % @ E E E‘ﬁ Cost Function: Sum Squared Error « |>
(5 save Session ~ _ Select New Select AddPlot FlotHodel (5 pore Options... Estimate
I - -
FILE PARAMETERS EXPERIMENTS FLOT OFTIONS ESTIMATE
Data Browser @ | Experiment plot: Charge_Exp | j Experiment plot: DCharge_Exp
¥ Parameters sdol 'f!,%'ﬁﬁujtp@jﬁtageﬂ sdol 'fl,%\flaujtp@é?mgoﬂ
K 15 — =
\ 1 = 1 ‘_\‘\“I
0.5 0.5 Tt
(<] i} a 0 \
k=1 b=}
] 5
= =
a Current =3 Current
E E
w Experiments < T] < | ‘
Charge_Exp) ‘ ‘ | ! - - s
DCharae Exo 0.5 f Measured 05 Measured
Model parameter values Madel parameter values
- = T a0 T I j
1] 0.5 1 1.5 i) -] 0 0.5 1 1.5 2 G -]
| Tteration plot 1 |
w Results [Esti arams
1260
—K
1k o v
08|
]
§ 06
- P
review ac
o
B 0zt
Measured ocutput signal(s): =
I I I I I I I I I |
- sdnBal:tery/SOC.—> 0) 3 3 A 5 5 7 8 g 10
Véll:age. 1 Measured input il iy

Click the Estimate button to start the estimation. You can modify estimation options by
setting the Cost Function combobox and clicking More Options....

While the estimation is running the plots update and a dialog showing estimation

progress appears. The progress dialog shows the estimation iterations, the number of
times the model has been evaluated (F-count), and the estimation cost at each iteration.

2-181

2 Parameter Estimation

PARAMETER ESTIMATION

Cost Function: Sum Squared Error

Experiment plot: Charge_Exp = Experiment plot: DCharge_Exp =

Data Browser

enee | L oYU DR
K 2 2
v —
1 [4 \
g° go
E Current § Current
w Experiments | g 1 £ I
Charge_Exp | L | ‘
’ ! Measured
1 | Measured o 5 I’:u'lodel pal'ameherlvalues
0 0.5 1 | Model parameter values a 0.5 1 15 5 25 3
j Tteration plot 1 Kl
¥ Results | EstimatedParams
EstimatedParams 07
—— K
—&—V

——— Loas{Charge Exp)

Scaled Value

w Preview |

Eatimation result(s):
K= 0.001
v=1.2

2-182

Estimate Model Parameters Per Experiment (GUI)
Iteration | F-count Charge_Exp DCharge Exp
(Minimize) (Minimize)
0 7 12,6204 41010
1 14 22115 1.3692
2 21 1.9613 0.2716
3 28 1.9663 0.2372
4 35 1.9765 02165
5 42 1.9756 0.2164
Optimization started 23-Apr-2014 15:10:19 -
=
Estimation converged, 23-Apr-2014 15:11:15

Estimated experiment values written to the workspace e
[Save teration...| |Display Options...| | Estimate |

After a number of iterations the estimation converges and terminates. The e

xperiement

plots show the measured and simlation data matching well. The EstimatedParams plot
shows the V, K, and Loss parameters changing during the estimation; the scale of V and
K, Loss are different, right click on the plot and select Show scaled values to see how

all the parameters changed from their original values.

Related Examples

To learn how to estimate parameters per expriment using the sdo.optimize command,

see “"Estimate Model Parameters Per Experiment (GUI)".
Close the model

bdclose("sdoBattery™)

2-183

2 Parameter Estimation

Estimate Model Parameters and Initial States (GUI)

2-184

This example shows how to estimate the physical parameters - mass (m), spring constant
(k) and damping (b) of a simple mass-spring-damper model. This example illustrates the
significance of initial state estimation.

Simulink® Model of the Mass Spring Damper System

The Simulink model for the mass-spring-damper system, msd_system, is shown below.

The model's output is the displacement response (position) of the mass in a mass-spring-
damper system, subject to a constant force (F), and an initial displacement (x0). x0 is the
initial condition of the Position integrator block. Run the simulation once to observe the

response of the model to a nominal set of parameter values.

F o+
-
I
|

Force =

Mass-Spring-Damper System

>

Mass

<k

Velooity

“--..‘_“_J"'

Damper

FParameter Estimation
with preloaded data

Click Estimate in the Ll
to run an estimation.

<l
~J

Spring

Copyright 2002-2014 The MathWorks, Inc.

Paositicn
T o 1|1 »
wel s pos — I:I
v \ ’
(el = -0.1} Fos tiors
[texpq yexpi]
Experimental
Position Data 1
[texp? yexp2]
Experimental
Position Data 2
[m bk -
Model
Farameters M ass./S pring/D amper
{from modelw orks pace) Values

Estimate Model Parameters and Initial States (GUI)

Experimental Data Sets

For estimation of the model parameters (m, b and k), two sets of experimental data is
used. These data sets were obtained using two different initial positions (0.1 and 0.3),
and contain additive noise. A plot of these data sets is shown below (orange and cyan
curves), along with the simulated response (yellow curve) of the Simulink model for
x0=-0.1 and a nominal set of parameter values (m=8, k=500, b=100).

Estimation of Model Parameters

The model has three parameters (k, b, m) that appear in the Gain blocks of the Simulink
model msd_system. We estimate these parameters using Parameter Estimation.

2-185

2 Parameter Estimation

Double-click the Parameter Estimation GUI with preloaded data block in

the model to open a pre-configured estimation GUI session. The experimental data

sets are already loaded in the project (data_expl and data_exp?2). Click the View
tab to layout the plots so that the Experiment plot:data_expl and Experiment
plot:data_expl are both visible. Click Plot Model Response to simulate the model
for the two experiments. The plots show that the model simulation does not match the

experiment data.

Eoa sy

EXPERIMENT PLOT

PARAMETER ESTIMATION WALIDATION
ﬁ Open Session ~ % @ E E E‘E Cost Function: Sum Squared Error ~ |>
[save Session ~ _ Sekct New Select AddPiot Piot Model More Options... Estimate
Parameters Experiment Experiments - Response -
FILE PARAMETERS EXPERIMENTS PLOT OPTIONS: ESTIMATE
Data Browser ® | Experiment plot: data_expl | | Experiment plot: data_sxp2 |

.-:';:-.)

w Parameters
n;'a“EEIf%“ c"\llu »51:

b n;léleu;[gu c"\'Eu R
K 0.3 0.3
m Measured Measured
Model parameter values /\\ Model parameter values
025 Ao N e, 0.25 Ao
w Experiments 0.2 [)2
data_expl {
data_exp2 | |
0.15 I } 0.15 #
s | ¢ |
K] | S
ER = ol
g E
W Results T £ |
0.05 || 05 |
w Preview -0.05 | 05 [|
-0.1 041
0 2 1 & 8 0 1 2 3 4 5 &
Time (seconds) Time (seconds)

Parameter Estimation with No State Estimation

The tool has been configured to estimate the model parameters using both data_expl
and data_exp2 experiments, click Select Parameters to see the selected parameters
and Select Experiments to see the experiments selected for estimation.

2-186

Estimate Model Parameters and Initial States (GUI)

Click Estimate to start the estimation. You can modify estimation options by setting the
Cost Function combobox and clicking More Options....

While the estimation is running the plots update and a dialog showing estimation
progress appears. The progress dialog shows the estimation iterations, the numberof
times the model has been evaluated (F-count), and the estimation cost at each iteration.

PARAMETER ESTIMATION

=

E Open Session

VALIDATION

&z &

EXPERIMENT PLOT

L el

Cost Function: Sum Squared Error «

>

5] save session ~ _ Select New Select AddPhot PlotModel) pore Optins... Estimate
- -
FILE PARAII—.‘FERS‘ EXFERIMENTS FLOT OFTIONS ESTIMATE —
Data Browser @ | Experiment plot: data_expl = | | Experiment plot: data_exp2 0 |
¥ Parameters | > @®
b mslFRetSiout Patay mslfRSioul ety
k 03 03
m Measured Measured
Maodel parameter values [\ Maodel parameter values
0.25 (\J i W 0.25 o ot oy
| |
w Experiments | 02 02 ,l
data_expl l
data_exp2
0.15 0.15
@ @
= i
2 o1 12 0.1
E £
w Results £ <
EstimatedParams 0.05 0.05
o o
w Preview -0.05 -0.05
Measured cutput signal({s):
- mad_system/Position:l T T
(1] 2 4] (1] 1 2 -] 4 al 3 7
Time (seconds) Time (seconds)

2-187

2 Parameter Estimation

2-188

Iteration | F-count data_expl data_exp2
(Minimize) (Minimize)
0 T 48737 245 =~
1 14 48737 249 |
2 21 37331 1.18
3 23 3.2630 0.87
4 35 3.2830 0.87|5
3 42 3.0230 0.74
i 45 2.8380 0.70
T o6 27386 0.66. =
& 63 2.3514 0.54
9 7o 23129 0.58
10 7T 20777 0.58
11 o4 1.9252 0.67 =
1| 1] [k
Optimization started 22-Apr-2014 13:19:47 -
=
Estimation converged, 22-Apr-2014 13:21:29 T
Estimated experiment values written to the workspace e

[Save teration...| |Display Options...| | Estimate |

After a number of iterations the estimation converges and terminates. The model is
updated with the estimated parameters and the estimation results are saved in the data
browser.

The data_expl and data_exp2 experiment plots show that the model parameters
have been tuned to match the measured experiment data as closely as possible. The
simulated measured signals match well from the 2 second mark onward but don't match
well before 2 seconds. The simulation results for both experiments start at -0.1. This is
the initial condition of the model which was not estimated; these plots show that the
initial condition should also be estimated.

Parameter Estimation with Initial State Estimation

Estimate Model Parameters and Initial States (GUI)

The data_expl and data_exp2 experiments specify the measured output data but as
seen above must also specify the model initial state. We now add the initial states to the
experiments and estimate them.

Right click data_expl and select Edit... to open a dialog to configure the experiment.
Outputs

Define measured output signals for this experiment.
msd system/Position:l (msd system/Position:1]

| <1x1 Signal, 76 points=| ~-| B & X

@ select Meaured Output Signals

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

5] select Inttial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment.

E Select Parameters

[el Piot & Simulate | J Piot &7 OK (2) Help

2-189

2 Parameter Estimation

Click Select Initial States and select the position state. Click OK to close the state
selector and add the selected state to the experiment.

Filter by state narme o
il State Current value
¥
Imsd_system/Velocity]

o 0K 3 cancel (3) Help

2-190

Estimate Model Parameters and Initial States (GUI)

Outputs
Define measured output signals for this experiment.
msd system/Position:l (msd system/Position:1]

|4=11-|:l Signal, 76 points> ""'| @» & x

@ select Meaured Qutput Signals

Initial States
Optionally define initial states for this experiment.

msd system/Position
b |01 ~| B X

Select Initial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment.

E, Select Parameters

[ol Piot & Simulate | 4 Piot & OK (2 Help

Right click data_exp?2 and select Edit.. and add the position state to the experiment.

2-191

2 Parameter Estimation

The experiments are now configured to include initial states that can be estimated. Click
Select Parameters.

2-192

Estimate Model Parameters and Initial States (GUI)

FParameters Tuned for all Experiments

b
b |100| ~| B ¢ [Estimate
k

b | 500 - @. % [Estimate
m

b (B - @ "4 Estimate

E Select parameters

Parameters and Initial States Tuned per Experiment

Experiment: | data_expl « |

Select experiment initial states for estimation.

msd system/Paosition

2 |-ﬂ.1 "'l @ Estimate

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

E Edit experiment

] Update Model &7 0K () Help

2-193

2 Parameter Estimation

The upper portion of the select parameters dialog has a section for parameters that are
tuned using all experiments selected for estimation. The lower section of the dialog has
a combo-box to select an experiment and widgets to specify initial states and parameters
that are tuned using only the selected experiment. For this problem the data expl and
data_exp?2 experiments estimate the model intial state for each experiment.

Now we are ready to start our estimation but first create plots to monitor the estimation
progress. Click Add Plot and select Parameter Trajectory, right click the plot and
select Show scaled values. This creates a plot that shows how the estimated parameter
values change during estimation. Click the View tab to layout the plots so that the
Experiment plot:data_expl, Experiment plot:data_exp2, and Iteration
plot 1 are both visible.

Click the Estimate button to start the estimation.

PARAMETER ESTIMATION VALDATION EXPERIMENT PLOT HiE 4 B LS
1 g L4 >
17| Open Session * E E Cost Function: Sum Squared Error =
[save Session =~ Select New Select AddPhot Piotodel (& pore Options... Estimate
- R -
FILE FARAMETERS EXPERIMENTS FLOT OFTIONS ESTIMATE
Data Browser @ | Experiment plot: data_expl | j Experiment plot: data_exp2
w Parameters > n;@‘i'i[éﬂ“@éﬁ. el > n;l\Elp,LﬂéﬁuE&u an
b 0.3 03
K | Measured Measured
0.28 Model parameter values f\ Model parameter values
m 0.25 | N AL
0.28 o [
@ @
302 13
2 £ 02
oz g
w Experiments < \ <
0.25 O AR g AN AN s
data_expl 0. \J LRI AR T AR WA VA V) 0.15
data_exp2 024 |k
0.23 0.1
0 2 4 6 8 0 1 2 3 4 5 6 7
| Iteration plot 1 |
¥ Results I EstimatedP arams
- fe
EstimatedParams
EstimatedParamsl = = a
2l
E]
3
Ef y-— — & =
W Preview 5}' T T
- 4 - _é + é:'—'_'7|x_'_ 2y :J
Estimation result(s): o -
b = 28.593 P —'—“ :
I
k= 359.7% 71E I | I | I - m
m = 0.97266 0 1 2 3 4 5 § | —E— mad_sysiemPositon{oata_expl)
mad_system/Positonidata_exp2)
Iteration

2-194

Estimate Model Parameters and Initial States (GUI)

After a number of iterations the estimation converges and terminates. The data_expl
and data_exp2 experiment plots show how estimating the initial value inproves the
estimation fit. The EstimatedParams plot shows the estimated initial state for the two
experiments, the plot also shows that the estimated k value did not change while b and m
changed slightly. You can confirm this by clicking EstimatedParams and examining the
preview pane and then clicking EstimatedParamsl and examining the preview pane.
Alternatively right click EstimatedParams and select Open... to open a dialog to view
the results.

w Results w Results
EstimatedParams EstimatedParams
EstimatedParamsl EstimatedParamsl
w Preview w Preview
Eatimation result{a): Eatimation result{a):
b= 17.559 b = 28.583
k = 400.07 k= 399,79
m= 1.06876 m= 0.972a8

This example shows that it is important to independently estimate initial states for each
experiment in order to obtain the correct estimates of the model parameters.

Related Examples

To learn how to estimate model parameters and initial states using the sdo.optimize
command, see “"Estimate Model Parameters and Initial States (Code)".

Close the model

2-195

2-196

Response Optimization

+ “How the Optimization Algorithm Formulates Minimization Problems” on page
3-3

+ “Specify Signals to Log” on page 3-12

+ “Specifying Step Response Characteristics” on page 3-13

+ “Specifying Custom Requirements” on page 3-17

+ “Move Constraints” on page 3-20

+ “Specify Time-Domain Design Requirements” on page 3-23

+ “Edit Design Requirements” on page 3-38

+ “Specify Frequency-Domain Design Requirements” on page 3-40

+ “Specify Design Variables” on page 3-62

+ “Specify Independent Parameters to Optimize” on page 3-64

+ “Update Model with Design Variables Set” on page 3-68

* “General Options” on page 3-70

+ “Optimization Options” on page 3-74

* “Create Linearization I/O Sets” on page 3-79

+ “Linearization Options” on page 3-81

* “Plots in the Design Optimization Tool” on page 3-84

* “Compare Requirements and Design Variables Using Spider Plot” on page 3-90
+ “Export Design Variable Values for Specific Iteration” on page 3-93

+ “Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)” on
page 3-95

+ “Design Optimization to Meet a Custom Objective (GUI)” on page 3-112
* “Design Optimization to Meet a Custom Objective (Code)” on page 3-133
+ “Design Optimization to Meet Custom Signal Requirements (GUI)” on page 3-142

* “Design Optimization to Meet Frequency-Domain Requirements (GUI)” on page
3-147

3 Response Optimization

3-2

“Specify Custom Signal Objective with Uncertain Variable (GUI)” on page 3-166
“Design Optimization with Uncertain Variables (Code)” on page 3-177
“Generate MATLAB Code for Design Optimization Problems (GUI)” on page 3-187

“Skip Model Simulation Based on Parameter Constraint Violation (GUI)” on page
3-193

“Optimizing Parameters for Robustness” on page 3-207

“Accelerating Model Simulations During Optimization” on page 3-218
“Speedup Using Parallel Computing” on page 3-220

“How to Use Parallel Computing” on page 3-224

“Optimization Does Not Make Progress” on page 3-232

“Optimization Convergence” on page 3-234

“Optimization Speed and Parallel Computing” on page 3-237
“Undesirable Parameter Values” on page 3-240

“Reverting to Initial Parameter Values” on page 3-242

“Manage Design Optimization Tool Session” on page 3-243

“Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing”
on page 3-245

How the Optimization Algorithm Formulates Minimization Problems

How the Optimization Algorithm Formulates Minimization
Problems

When you optimize parameters of a Simulink model to meet design requirements,
Simulink Design Optimization software automatically converts the requirements into
a constrained optimization problem and then solves the problem using optimization
techniques. The constrained optimization problem iteratively simulates the Simulink
model, compares the results of the simulations with the constraint objectives, and uses
optimization methods to adjust tuned parameters to better meet the objectives.

This topic describes how the software formulates the constrained optimization problem
used by the optimization algorithms. For each optimization algorithm, the software
formulates one of the following types of minimization problems:

* Feasibility

* Tracking

+ Mixed feasibility and tracking

For more information on how each optimization algorithm formulates these problems,
see:

* “Gradient Descent Method Problem Formulations” on page 3-7

* “Simplex Search Method Problem Formulations” on page 3-8

* “Pattern Search Method Problem Formulations” on page 3-9

+ “Gradient Computations” on page 3-10

Feasibility Problem and Constraint Formulation
Feasibility means that the optimization algorithm finds parameter values that satisfy
all constraints to within specified tolerances but does not minimize any objective or cost

function in doing so.

In the following figure, x;, x3, and x, represent a combination of parameter values P; and
P; and are feasible solutions because they do not violate the lower bound constraint.

3-3

3 Response Optimization

Pod

° °
X °
2 X.
X4 3 °
. . L Xn
Violation ower
Bound

In a Simulink model, you constrain a signal by specifying lower and upper bounds
in a Check block (Check Step Response Characteristics, ...) or a requirement object
(sdo.requirements.StepResponseEnvelope, ...), as shown in the following figure.

Upper Bounds

Lower Bounds

0 10 20 20 40
Time (sec)

These constraints are piecewise linear bounds. A piecewise linear bound y;,q with n edges
can be represented as:

Y,) t, St<t,.

The software computes the signed distance between the simulated response and the edge.
The signed distance for lower bounds is:

3-4

How the Optimization Algorithm Formulates Minimization Problems

max Ypnd ~ Ysim

¢ <t<t,
C=| max Ypnd ~Ysim |
t,<t<t,
max Ypnd ~Ysim
t,<t<t,

where y,;,, is the simulated response and is a function of the parameters being optimized.

The signed distance for upper bounds is:

max Yeim ~ Ybnd

£ <t<t,
C=| Max Yem — Ybnd
ty<t<t
max Yqi,, —Y
¢ <tst, sim bnd

At the command line, opt_fcn supplies ¢ directly from the Cleq field of vals.

If all the constraints are met (¢ < 0) for some combination of parameter values, then that
solution is said to be feasible. In the following figure, x; and x3 are feasible solutions.

Pok

Violation

°
X2
Xn

When your model has multiple requirements or vector signals feeding a requirement, the
constraint vector is extended with the constraint violations for each signal and bound:

T

C =[epze5 756,]

3 Response Optimization

Tracking Problem

In addition to lower and upper bounds, you can specify a reference signal in a Check

Against Reference block or sdo. requirements.SignalTracking object, which the
Simulink model output can track. The tracking objective is a sum-squared-error tracking
objective.

You specify the reference signal as a sequence of time-amplitude pairs:
yref(tref s tref € {TrefO,Trefb T T;“efN J.
The software computes the simulated response as a sequence of time-amplitude pairs:

e {T.

sim0>

Tsiml »TT TsimN),

Ysim (tsim)’ tsim

where some values of ¢, may match the values of ¢,..

A new time base, t,,,, is formed from the union of the elements of ¢,,; and Z,;,,. Elements
that are not within the minimum-maximum range of both ¢,,; and ¢, are omitted:

bnew =t tbsjim Y tref}

Using linear interpolation, the software computes the values of y,.; and y;, at the time
points in t,., and then computes the scaled error:

(ysim (pew) — yref(tnew)) .

“;ax|yref |

new

e(tnew) =

Finally, the software computes the weighted, integral square error:

f=[w(t)en?at

Note: The weight w(t) is 1 by default. You can specify a different value of weight only at
the command line.

How the Optimization Algorithm Formulates Minimization Problems

When your model has requirements or vector signals feeding a requirement, the tracking
objective equals the sum of the individual tracking integral errors for each signal:

F=)f.

Gradient Descent Method Problem Formulations

The Gradient Descent method uses the Optimization Toolbox function fmincon to
optimize model parameters to meet design requirements.

Problem Type

Problem Formulation

Feasibility Problem

The software formulates the constraint C(x) as described in
“Feasibility Problem and Constraint Formulation” on page 3-3.

+ If you select the maximally feasible solution option (i.e., the
optimization continues after an initial feasible solution is found),
the software uses the following problem formulation:

fer] 7

st. C(x)<y
x<x<Xx
y<0

y is a slack variable that permits a feasible solution with C(x) <y
rather than C(x) < 0.

+ If you do not select the maximally feasible solution option (i.e., the

optimization terminates as soon as a feasible solution is found),
the software uses the following problem formulation:

min 0
X

st. C(x)<0
X<x<X

Tracking Problem

The software formulates the tracking objective F(x) as described in
“Tracking Problem” on page 3-6 and minimizes the tracking
objective:

3-7

3 Response Optimization

Problem Type

Problem Formulation

min F(x)
X

st. x<x<X

Mixed Feasibility and
Tracking Problem

The software minimizes following problem formulation:

min F(x)
X
st. Cx)<0
x<x<X

Note: When tracking a reference signal, the software ignores the
maximally feasible solution option.

Simplex Search Method Problem Formulations

The Simplex Search method uses the Optimization Toolbox function fminsearch and
fminbnd to optimize model parameters to meet design requirements. fminbnd is used if
one scalar parameter is being optimized, otherwise fminsearch is used. You cannot use

parameter bounds x < x <X with fminsearch.

Problem Type

Problem Formulation

Feasibility Problem

The software formulates the constraint C(x) as described in
“Feasibility Problem and Constraint Formulation” on page 3-3
and then minimizes the maximum constraint violation:

min max(C(x))

Tracking Problem

The software formulates the tracking objective F(x) as described in
“Tracking Problem” on page 3-6 and then minimizes the tracking
objective:

min F(x)
X

Mixed Feasibility and
Tracking Problem

3-8

The software formulates the problem in two steps:

How the Optimization Algorithm Formulates Minimization Problems

Problem Type

Problem Formulation

1 Finds a feasible solution.

min max(C(x))

2 Minimizes the tracking objective. The software uses the results
from step 1 as initial guesses and maintains feasibility by
introducing a discontinuous barrier in the optimization objective.

min T (x)
X

where
M) =1 if max (C(x)) > 0
F(x) otherwise.

Pattern Search Method Problem Formulations

The Pattern Search method uses the Global Optimization Toolbox function
patternsearch to optimize model parameters to meet design requirements.

Problem Type

Problem Formulation

Feasibility Problem

The software formulates the constraint C(x) as described in
“Feasibility Problem and Constraint Formulation” on page 3-3
and then minimizes the maximum constraint violation:

min max(C(x))

st. x<x<Xx

Tracking Problem

The software formulates the tracking objective F(x) as described in
“Tracking Problem” on page 3-6 and then minimizes the tracking
objective:

min F(x)
X

st. x<x<Xx

3-9

3 Response Optimization

Problem Type

Problem Formulation

Mixed Feasibility and
Tracking Problem

1

The software formulates the problem in two steps:

Finds a feasible solution.

min max(C(x))

st. x<x<Xx

Minimizes the tracking objective. The software uses the results
from step 1 as initial guesses and maintains feasibility by
introducing a discontinuous barrier in the optimization objective.

min I'(x)
X

St.x<x<X
where

Ta) = {oo if max ('C(x)) >0
F(x) otherwise.

Gradient Computations

For the Gradient descent (fmincon) optimization solver, the gradients are computed
using numerical perturbation:

1
dx = 3eps x max|| x| 110 Ytpical

dL =max(x - dx,x
dR = min (x +dx, %5y)

F; =opt _fen(dL)
Fp =opt _fen(dR)

dF _ (Fy, — Fg)
dx (dL—dR)

min)

* x1s a scalar design variable.

3-10

How the Optimization Algorithm Formulates Minimization Problems

* Xpin 1s the lower bound of x.
* Xnax 18 the upper bound of x.
* Xypicar 18 the scaled value of x.

* opt_fcn is the objective function.
dx is relatively large to accommodate simulation solver tolerances.

If you want to compute the gradients in any other way, you can do so in the cost function
you write for performing design optimization programmatically. See sdo.optimize and
GradFcen of sdo.OptimizeOptions for more information.

3-11

3 Response Optimization

Specify Signals to Log

Design requirements require logged model signals. During optimization, the model is
simulated using the current value of the design variables and the logged signal is used to
evaluate the design requirements.

1

In the Design Optimization tool, select Signal in the New drop-down list. A
window opens where you select a signal to log.

In the Simulink model window, click the signal to which you want to add a
requirement.

Create Signal et

Signal set: |Sig|

Signal

Mo signals have currently been selected.
Please go back to the model and dick on o)
a signal to select it

| ok || Cancel || Help |

The window updates and displays the name of the block and the port number where
the selected signal is located.

Select the signal and click to add it to the signal set.

In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

See Also

3-12

“Design Optimization to Track Reference Signal (GUI)”
sdo.SimulationTest

Specifying Step Response Characteristics

Specifying Step Response Characteristics

Specify Step Response Characteristics

To specify step response characteristics:

1 You can apply this requirement to either a signal or a linearization of your model.

In the Design Optimization Tool, click New. To apply this requirement to a

signal, select the Step Response Envelope entry in the New Time Domain
Requirement section of the New list. To apply this requirement to a linearization
of your model, select the Step Response Envelope entry in the New Frequency
Domain Requirement section of the New list. The latter option requires Simulink

Control Design software.

A window opens where you specify the step response requirements on a signal, or
system.

2 Specify a requirement name in the Name box.

3 Specify the step response characteristics:

% Overshoot

Li ya % Settling
Final Value / \/\\v/___t%

% Rise

Amplitude

% Undershoot

Initial Value— K —/ - |

Rise Time Settling Time Time

3-13

3 Response Optimization

3-14

+ Initial value: Input level before the step occurs
+ Step time: Time at which the step takes place
Final value: Input level after the step occurs

Rise time: The time taken for the response signal to reach a specified percentage
of the step's range. The step's range is the difference between the final and initial
values.

% Rise: The percentage used in the rise time.

+ Settling time: The time taken until the response signal settles within a specified
region around the final value. This settling region is defined as the final step
value plus or minus the specified percentage of the final value.

* % Settling: The percentage used in the settling time.

* % Overshoot: The amount by which the response signal can exceed the final
value. This amount is specified as a percentage of the step's range. The step's
range is the difference between the final and initial values.

* % Undershoot: The amount by which the response signal can undershoot the
initial value. This amount is specified as a percentage of the step's range. The
step's range is the difference between the final and initial values.

Specify the signals or systems to be bound.

You can apply this requirement to a model signal or to a linearization of your
Simulink model (requires Simulink Control Design software).

Apply this requirement to a model signal:

In the Select Signals to Bound area, select a logged signal to which you will
apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to
Log” on page 3-12, it appears in the list. Select the corresponding check-box.

If you haven’t selected a signal to log:

Click lLI A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a
requirement,

Specifying Step Response Characteristics

Create 5ignal et~
Signal set: | Sig|

Signal

Mo signals have currently been selected.
Please go back to the model and dick on o |
a signal to select it

[

| ok || cancel || Help |

The window updates and displays the name of the block and the port number
where the selected signal is located.

Select the signal and click to add it to the signal set.

d Inthe Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

+ Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is linearized
and sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in
the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to open
the Create linearization I/O set dialog box.

3-15

3 Response Optimization

3-16

For more information on using this dialog box, see “Create Linearization I/O
Sets”.

For more information on linearization, see “What Is Linearization?”.
5 Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also appears in
the Design Optimization tool window.

Alternatively, you can use the Check Step Response Characteristics block to specify step
response bounds for a signal.

See Also

“Design Optimization to Meet Step Response Requirements (GUI)”

More About
. “Specify Time-Domain Design Requirements” on page 3-23
. “Specify Frequency-Domain Design Requirements” on page 3-40

Specifying Custom Requirements

Specifying Custom Requirements

To specify custom requirements, such as minimizing system energy:

1

In the Design Optimization tool, select Custom Requirement in the New list. A
window opens where you specify the custom requirement.

Specify a requirement name in the Name box.
Specify the requirement type using the Type list.

Specify the name of the function that contains the custom requirement in the
Function box. The field must be specified as a function handle using @. The function

must be on the MATLAB path. Click ‘i, to review or edit the function.

If the function does not exist, clicking Ii, opens a template MATLAB file.
Use this file to implement the custom requirement. The default function name is
myCustomRequi rement.

(Optional) If you want to prevent the solver from considering specific parameter
combinations, select the Error if constraint is violated check box. Use this option
for parameter-only constraints.

During an optimization iteration, the solver evaluates requirements with this option
selected first.

If the constraint is violated, the solver skips evaluating any remaining
requirements and proceeds to the next iterate.

If the constraint is not violated, the solver evaluates the remaining requirements
for the current iterate. If any of the remaining requirements bound signals or
systems, then the solver simulates the model .

For more information, see “Skip Model Simulation Based on Parameter Constraint
Violation (GUI)”.

Note: If you select this check box, then do not specify signals or systems to bound. If
you do specify signals or systems, then this check box is ignored.

(Optional) Specify the signal or system, or both, to be bound.

3-17

3 Response Optimization

3-18

You can apply this requirement to model signals, or a linearization of your Simulink
model (requires Simulink Control Design software), or both.

Click Select Signals and Systems to Bound (Optional) to view the signal and
linearization I/O selection area.

Apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the
requirement.

If you have already selected a signal to log, as described in “Specify Signals to
Log” on page 3-12, it appears in the list. Select the corresponding check box.

If you have not selected a signal to log:

a

b

Click . A window opens where you specify the logged signal.

In the Simulink model window, click the signal to which you want to add a
requirement,

Create 5ignal%t
Signal set: |Sig|

Signal

Mo signals have currently been selected.
Please go back to the model and dick on o
a signal to select it

1

E

| ok || Cancel || Help |

The window updates and displays the name of the block and the port number
where the selected signal is located.

Select the signal and click === to add it to the signal set.

In the Signal set box, enter a name for the selected signal set.

Specifying Custom Requirements

Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is linearized
and sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in
the list. Select the corresponding check box.

If you have not created a linearization input/output set, click ILI to open
the Create linearization I/O set dialog box. For more information on using
this dialog box, see “Create Linearization I/O Sets”.

For more information on linearization, see “What Is Linearization?”.
7 Click OK.

A new variable, with the specified name, appears in the Design Optimization
Workspace of the Design Optimization tool. A graphical display of the requirement
also appears in the Design Optimization tool window.

Related Examples

. “Design Optimization to Meet a Custom Objective (GUI)” on page 3-112

. “Design Optimization to Meet Custom Signal Requirements (GUI)” on page 3-142
. “Specify Time-Domain Design Requirements” on page 3-23

. “Specify Frequency-Domain Design Requirements” on page 3-40

3-19

3 Response Optimization

Move Constraints

In this section...

“Move Constraints Graphically” on page 3-20

“Position Constraints Exactly” on page 3-21

Constraint-bound edges define time-domain constraints you would like to place on a
particular signal in your model. You can position these edges, which appear as a yellow
shaded region bordered by a black line, graphically or exactly.

Move Constraints Graphically

Use the mouse to click and drag edges in the amplitude versus time plot, as shown in the
following figure.

sooRectifierFull-Wave Rectifier:1

a 1 2 3 4) B 7 g 9 10
Time (seconds)

* To move a constraint edge boundary or to change the slope of a constraint edge,
position the pointer over a constraint edge endpoint, and press and hold down the left
mouse button. The pointer should change to a hand symbol. While still holding the
button down, drag the pointer to the target location, and release the mouse button.
Note that the edges on either side of the boundary might not maintain their slopes.

* To move an entire constraint edge up, down, left, or right, position the mouse pointer
over the edge and press and hold down the left mouse button. The pointer should

3-20

Move Constraints

change to a four-way arrow. While still holding the button down, drag the pointer to
the target location, and release the mouse button. Note that the edges on either side
of the boundary might not maintain their slopes.

To move a constraint edge to a perfectly horizontal or vertical position, hold down the
Shift key while clicking and dragging the constraint edge. This causes the constraint
edge to snap to a horizontal or vertical position.

When moving constraint bound edges, it is sometimes helpful to display gridlines on the
axes for careful alignment of the constraint bound edges. To turn the gridlines on or off,
right-click within the axes and select Grid.

Note: You can move a lower bound constraint edge above an upper bound constraint
edge, or vice versa, but this produces an error when you attempt to run the optimization.

Position Constraints Exactly
To position a constraint edge exactly:

1 Position the pointer over the edge you want to move and right-click. Select Edit to
open the Edit Design Requirement dialog box.

-:_,_.l_': Edit Design Requirement

=101 |

Design requirement. [Loswer time response bound from 010 10 sec LI
—Design requirement parameters
Segments:
Skart End
Time amplitude Time: Amplitude Slope ‘'eight
1] -0.01 1 -0.01 0 1|
0.9 3 0.9 0 1
3 0.93 10 0.99 0 1|=]
Insert | Delete |

Help |

3-21

3 Response Optimization

2 Specify the position of each constraint edge in the Time and Amplitude columns.

More About

“Specify Time-Domain Design Requirements” on page 3-23

“Specify Frequency-Domain Design Requirements” on page 3-40

3-22

Specify Time-Domain Design Requirements

Specify Time-Domain Design Requirements

In this section...

“Specify Piecewise-Linear Lower and Upper Bounds” on page 3-23
“Specify Signal Property Requirements” on page 3-24

“Specify Step Response Characteristics” on page 3-13

“Track Reference Signals” on page 3-30

“Specify Custom Requirements” on page 3-33

“Edit Design Requirements” on page 3-36

Specify Piecewise-Linear Lower and Upper Bounds

To specify upper and lower bounds on a signal:

1

w

In the Design Optimization tool, select Signal Bound in the New drop-down list. A
window opens where you specify upper or lower bounds on a signal.

Specify a requirement name in the Name box.
Select the requirement type using the Type list.

Specify the edge start and end times and corresponding amplitude in the Time (s)
and Amplitude columns.

Click lLI to specify additional bound edges.

Select a row and click ILI to delete a bound edge.

In the Select Signals to Bound area, select a logged signal to apply the
requirement to.

If you have already selected signals, as described in “Specify Signals to Log” on page
3-12, they appear in the list. Select the corresponding check-box.

If you haven'’t selected a signal to log:

Click ILI A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a
requirement.

3-23

3 Response Optimization

Create 5ignal 5et
Signal set: | Sig|

Signal

Mo signals have currently been selected.
Please go badk to the model and dick on [|m)
a signal to selectit,

[

| ok || cancel || Help |

The window updates and displays the name of the block and the port number
where the selected signal is located.

Select the signal and click to add it to the signal set.

d Inthe Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

7 Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also appears in
the Design Optimization tool window.

8 (Optional) In the graphical display, you can:

“Move Constraints Graphically”

+ “Position Constraints Exactly”

Alternatively, you can add a Check Custom Bounds block to your model to specify
piecewise-linear bounds.

Specify Signal Property Requirements

To specify signal property requirements:

3-24

Property List

In the Design Optimization tool, select Signal Property in the New drop-down
list. The Create Requirement window opens where you specify signal property
requirements.

In the Name box, specify a requirement name.

In the Specify Property area, specify a signal property requirement using the
Property and Type lists and the Bound box.

Property List

For a signal S(j),...,S(ty) you can specify one of the following properties using the
Property list:

Signal minimum — min(S)
+ Signal maximum — max(S)

Signal final value — S(ty)

+ Signal mean — mean(S)
Signal median — median(S)
+ Signal variance — variance(S)

Signal interquartile range — Difference between the 75th and 25th
percentiles of the signal values.

tN
Signal sum—) SG)

i=t,

tN
Signal sum square — ZS(i)z

1=t

tN
Signal sum absolute — ZIS(i)I

1=t

3-25

3 Response Optimization

3-26

Custom Signal Property

You can add a custom signal property to the Property list by editing the function
sdo.requirements.signalPropertyFcns.

a At the MATLAB command prompt., enter edit
sdo.requirements.signalPropertyFcns.

b Add your signal property function to the FcnData cell array.

Your signal property function must be on the path.

In the Select Signals to Bound area, select the logged signal to which you want to
apply the requirement.

If you have already selected a signal, as described in “Specify Signals to Log” on
page 3-12, the signal appears in the list. Select the corresponding check box for that
signal.

If you have not selected a signal to log:

a Click . The Create Signal Set window opens where you specify the logged

signal.

b Inthe Simulink model window, click the signal to which you want to add a
requirement.

Create Signal et
Signal set: |Sig|

Signal

Mo signals have currently been selected.
Please go badk to the model and didk on o o

a signal to select it.

[

| ok || Cancel || Help |

Custom Signal Property

The window updates and displays the name of the block and the port number
where the selected signal is located.

Select the signal and click 4 to add it to the signal set.

d Inthe Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. An iteration plot depicting the signal property for each
iteration also appears in the Design Optimization tool window.

Specify Step Response Characteristics

To specify step response characteristics:

1

You can apply this requirement to either a signal or a linearization of your model.

In the Design Optimization Tool, click New. To apply this requirement to a

signal, select the Step Response Envelope entry in the New Time Domain
Requirement section of the New list. To apply this requirement to a linearization
of your model, select the Step Response Envelope entry in the New Frequency
Domain Requirement section of the New list. The latter option requires Simulink
Control Design software.

A window opens where you specify the step response requirements on a signal, or
system.

Specify a requirement name in the Name box.

Specify the step response characteristics:

3-27

3 Response Optimization

% Overshoot

L1 Vs % Settling
Final Value / \/\\\//\“_—‘L -

% Rise

Amplitude

% Undershoot

Initial Value - - -/ 4 |

3-28

Rise Time Settling Time Time

Initial value: Input level before the step occurs
Step time: Time at which the step takes place
Final value: Input level after the step occurs

Rise time: The time taken for the response signal to reach a specified percentage
of the step's range. The step's range is the difference between the final and initial
values.

% Rise: The percentage used in the rise time.

Settling time: The time taken until the response signal settles within a specified
region around the final value. This settling region is defined as the final step
value plus or minus the specified percentage of the final value.

% Settling: The percentage used in the settling time.

% Overshoot: The amount by which the response signal can exceed the final
value. This amount is specified as a percentage of the step's range. The step's
range is the difference between the final and initial values.

% Undershoot: The amount by which the response signal can undershoot the
initial value. This amount is specified as a percentage of the step's range. The
step's range is the difference between the final and initial values.

Custom Signal Property

4 Specify the signals or systems to be bound.

You can apply this requirement to a model signal or to a linearization of your
Simulink model (requires Simulink Control Design software).

Apply this requirement to a model signal:

In the Select Signals to Bound area, select a logged signal to which you will
apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to
Log” on page 3-12, it appears in the list. Select the corresponding check-box.

If you haven’t selected a signal to log:

Click . A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a
requirement,

Create Signal%t
Signal set: |Sig|

Signal

Mo signals have currently been selected.
Please go back to the model and dick on o {mj
a signal to select it

E

| ok || Cancel || Help |

The window updates and displays the name of the block and the port number
where the selected signal is located.

Select the signal and click to add it to the signal set.

d Inthe Signal set box, enter a name for the selected signal set.

3-29

3 Response Optimization

3-30

Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is linearized
and sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O area.
If you have already created a linearization input/output set, it will appear in
the list. Select the corresponding check box.

If you have not created a linearization input/output set, click |L| to open

the Create linearization I/0 set dialog box.

For more information on using this dialog box, see “Create Linearization I/O
Sets”.

For more information on linearization, see “What Is Linearization?”.
5 Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also appears in
the Design Optimization tool window.

Alternatively, you can use the Check Step Response Characteristics block to specify step
response bounds for a signal.

See Also

“Design Optimization to Meet Step Response Requirements (GUI)”

Track Reference Signals

Use reference tracking to force a model signal to match a desired signal.

See Also

To track a reference signal:

1

In the Design Optimization tool, select Signal Tracking in the New drop-down list.
A window opens where you specify the reference signal to track.

Specify a requirement name in the Name box.

Define the reference signal by entering vectors, or variables from the workspace, in
the Time vector and Amplitude fields.

Click Update reference signal data to use the new amplitude and time vector as
the reference signal.

Specify how the optimization solver minimizes the error between the reference and
model signals using the Tracking Method list:
* SSE — Reduces the sum of squared errors
SAE — Reduces the sum of absolute errors
In the Specify Signal to Track Reference Signal area, select a logged signal to

apply the requirement to.

If you already selected a signal to log, as described in “Specify Signals to Log” on
page 3-12, they appear in the list. Select the corresponding check-box.

If you haven’t selected a signal to log:

Click lLI A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a
requirement.

3-31

3 Response Optimization

Create Signal et

Signal set: | Sig|

Signal

Mo signals have currently been selected.
Please go badk to the model and dick on [|m
a signal to selectit,

[

| ok || cancel || Help |

The window updates and displays the name of the block and the port number
where the selected signal is located.

Select the signal and click to add it to the signal set.

d Inthe Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

e Select the check-box corresponding to the signal and click OK.
A variable with the specified requirement name appears in the Design

Optimization Workspace. A graphical display of the signal bound also appears in
the Design Optimization tool window.

Note: When tracking a reference signal, the software ignores the maximally feasible
solution option. For more information on this option, see “Selecting Optimization
Termination Options” on page 3-76.

Alternatively, you can use the Check Against Reference block to specify a reference
signal to track.

3-32

See Also

See Also

“Design Optimization to Track Reference Signal (GUI)”

Specify Custom Requirements

To specify custom requirements, such as minimizing system energy:

1

In the Design Optimization tool, select Custom Requirement in the New list. A
window opens where you specify the custom requirement.

Specify a requirement name in the Name box.
Specify the requirement type using the Type list.

Specify the name of the function that contains the custom requirement in the
Function box. The field must be specified as a function handle using @. The function

must be on the MATLAB path. Click ‘i’ to review or edit the function.

If the function does not exist, clicking Ii, opens a template MATLAB file.
Use this file to implement the custom requirement. The default function name is
myCustomRequirement.

(Optional) If you want to prevent the solver from considering specific parameter
combinations, select the Error if constraint is violated check box. Use this option
for parameter-only constraints.

During an optimization iteration, the solver evaluates requirements with this option
selected first.

If the constraint is violated, the solver skips evaluating any remaining
requirements and proceeds to the next iterate.

If the constraint is not violated, the solver evaluates the remaining requirements
for the current iterate. If any of the remaining requirements bound signals or
systems, then the solver simulates the model .

For more information, see “Skip Model Simulation Based on Parameter Constraint
Violation (GUI)”.

3-33

3 Response Optimization

3-34

Note: If you select this check box, then do not specify signals or systems to bound. If
you do specify signals or systems, then this check box is ignored.

(Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your Simulink
model (requires Simulink Control Design software), or both.

Click Select Signals and Systems to Bound (Optional) to view the signal and
linearization I/O selection area.

* Apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the
requirement.

If you have already selected a signal to log, as described in “Specify Signals to
Log” on page 3-12, it appears in the list. Select the corresponding check box.

If you have not selected a signal to log:

a
Click . A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a
requirement.

Create 5ignal et
Signal set: S.iq|

Signal

Mo signals have currently been selected.
Please go back to the model and dick an o o
a signal to select it.

[

| ok || cancel |[Help |

See Also

The window updates and displays the name of the block and the port number
where the selected signal is located.

Select the signal and click 4 to add it to the signal set.

d Inthe Signal set box, enter a name for the selected signal set.
Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.
+ Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is linearized
and sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in
the list. Select the corresponding check box.

If you have not created a linearization input/output set, click ILI to open
the Create linearization I/O set dialog box. For more information on using
this dialog box, see “Create Linearization I/O Sets”.

For more information on linearization, see “What Is Linearization?”.

7 Click OK.

A new variable, with the specified name, appears in the Design Optimization
Workspace of the Design Optimization tool. A graphical display of the requirement
also appears in the Design Optimization tool window.

See Also

* “Design Optimization to Meet a Custom Objective (GUI)” on page 3-112
* “Design Optimization to Meet Custom Signal Requirements (GUI)” on page 3-142

3-35

3 Response Optimization

Edit Design Requirements

The Edit Design Requirement dialog box allows you to exactly position constraint
segments and to edit other properties of these constraints. The dialog box has two main
components:

* An upper panel to specify the constraint you are editing

* A lower panel to edit the constraint parameters

The upper panel of the Edit Design Requirement dialog box resembles the image in the
following figure.

Design reguirement; |Upper time response bound from 01o 10 sec :I

In the context of the SISO Tool in Control System Toolbox™ software, Design
requirement refers to both the particular editor within the SISO Tool that contains the
requirement and the particular requirement within that editor. To edit other constraints
within the SISO Tool, select another design requirement from the drop-down menu.

Edit Design Requirement Dialog Box Parameters

The particular parameters shown within the lower panel of the Edit Design Requirement
dialog box depend on the type of constraint/requirement. In some cases, the lower panel
contains a grid with one row for each segment and one column for each constraint
parameter. The following table summarizes the various constraint parameters.

Edit Design Requirement Dialog Box Parameters

Parameter Found in Description

Time Upper and lower time Defines the time range of a segment
response bounds on step and |within a constraint/requirement.
impulse response plots

Amplitude Upper and lower time Defines the beginning and ending
response bounds on step and |amplitude of a constraint segment.
impulse response plots

Slope (1/s) Upper and lower time Defines the slope, in 1/s, of a constraint
response bounds segment. It is an alternative method

of specifying the magnitude values.
Entering a new Slope value changes

3-36

See Also

Parameter

Found in

Description

any previously defined magnitude
values.

Final value

Step response bounds

Defines the input level after the step
occurs.

Rise time Step response bounds Defines a constraint segment for a
particular rise time.

% Rise Step response bounds The percentage of the step's range used
to describe the rise time.

Settling time Step response bounds Defines a constraint segment for a

particular settling time.

% Settling

Step response bounds

The percentage of the final value that
defines the settling region used to
describe the settling time.

% Overshoot

Step response bounds

% Undershoot

Step response bounds

Defines the constraint segments for a
particular percent undershoot.

3-37

3 Response Optimization

Edit Design Requirements

The Edit Design Requirement dialog box allows you to exactly position constraint
segments and to edit other properties of these constraints. The dialog box has two main
components:

* An upper panel to specify the constraint you are editing

* A lower panel to edit the constraint parameters

The upper panel of the Edit Design Requirement dialog box resembles the image in the
following figure.

Deszign requirement: |Uppet time response baund from 01010 sec :I

In the context of the SISO Tool in Control System Toolbox software, Design
requirement refers to both the particular editor within the SISO Tool that contains the
requirement and the particular requirement within that editor. To edit other constraints
within the SISO Tool, select another design requirement from the drop-down menu.

Edit Design Requirement Dialog Box Parameters

The particular parameters shown within the lower panel of the Edit Design Requirement
dialog box depend on the type of constraint/requirement. In some cases, the lower panel
contains a grid with one row for each segment and one column for each constraint
parameter. The following table summarizes the various constraint parameters.

Edit Design Requirement Dialog Box Parameters

Parameter Found in Description

Time Upper and lower time Defines the time range of a segment
response bounds on step and |within a constraint/requirement.
impulse response plots

Amplitude Upper and lower time Defines the beginning and ending
response bounds on step and |amplitude of a constraint segment.
impulse response plots

Slope (1/s) Upper and lower time Defines the slope, in 1/s, of a constraint
response bounds segment. It is an alternative method

3-38

Edit Design Requirements

Parameter

Found in

Description

of specifying the magnitude values.
Entering a new Slope value changes
any previously defined magnitude
values.

Final value

Step response bounds

Defines the input level after the step
occurs.

Rise time Step response bounds Defines a constraint segment for a
particular rise time.

% Rise Step response bounds The percentage of the step's range used
to describe the rise time.

Settling time Step response bounds Defines a constraint segment for a

particular settling time.

% Settling

Step response bounds

The percentage of the final value that
defines the settling region used to
describe the settling time.

% Overshoot

Step response bounds

% Undershoot

Step response bounds

Defines the constraint segments for a
particular percent undershoot.

3-39

3 Response Optimization

Specify Frequency-Domain Design Requirements

3-40

In this section...

“Specify Lower Bounds on Gain and Phase Margin” on page 3-40

“Specify Piecewise-Linear Lower and Upper Bounds on Frequency Response” on page
3-42

“Specify Bound on Closed-Loop Peak Gain” on page 3-44

“Specify Lower Bound on Damping Ratio” on page 3-46

“Specify Upper and Lower Bounds on Natural Frequency” on page 3-48
“Specify Upper Bound on Approximate Settling Time” on page 3-50

“Specify Piecewise-Linear Upper and Lower Bounds on Singular Values” on page
3-52

“Specify Step Response Characteristics” on page 3-13

“Specify Custom Requirements” on page 3-33

Specify Lower Bounds on Gain and Phase Margin

To specify lower bounds on the gain and phase margin of a linear system:

1 In the Design Optimization tool, select Gain and Phase Margin in the New list. A
window opens where you specify lower bounds on the gain and phase margin of your
linear system.

2 Specify a requirement name in Name.

3 Specify bounds on the gain margin or phase margin, or both.

Specify Frequency-Domain Design Requirements

Bode Diagram
o= 954 dB (at 2.24 radfz) , Pm= 254 deg (st 1.23 radfs)
100 T T T
a0 B
o
=
o
-]] P e Gain Marain 1
= : : @— Gain' Margin
g Do
= =50 - : : 4
00 L AR | T o
-80 - -
=135
=
LE}
=
o -180 -
(5]
(]
=
R
270 e L Lol L Lol L MR A | L PR = |
102 17 Tia 10" 100

Frequency (radiz)

* Gain margin — Amount of gain increase or decrease required to make the loop
gain unity at the frequency where the phase angle is —180°.

* Phase margin — Amount of phase increase or decrease required to make the
phase angle —180° when the loop gain is 1.0

To specify a lower bound on the gain margin or phase margin, or both, select the
corresponding check box and enter the lower bound value.

In the Select Systems to Bound section, select the linear systems to which this
requirement applies.

Linear systems are defined by snapshot times at which the model is linearized and
sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in the
list. Select the corresponding check box.

3-41

3 Response Optimization

3-42

6

If you have not created a linearization input/output set, click lLI to open the
Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/0
Sets”.

For more information on linearization, see “What Is Linearization?”.

Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also appears in
the Design Optimization tool window.

(Optional) In the graphical display, you can:

+ “Move Constraints Graphically”

+ “Position Constraints Exactly”

Alternatively, you can use the Check Gain and Phase Margins block to specify bounds on
the gain and phase margin. (Requires Simulink Control Design.)

Specify Piecewise-Linear Lower and Upper Bounds on Frequency
Response

To specify upper or lower bounds on the magnitude of a system response:

1

In the Design Optimization tool, select Bode Magnitude in the New list. A window
opens where you specify the lower or upper bounds on the magnitude of the system
response.

Specify a requirement name in the Name box.
Specify the requirement type using the Type list.

Specify the edge start and end frequencies and corresponding magnitude in the
Frequency and Magnitude columns.

Insert or delete bound edges.

Click lLI to specify additional bound edges.

Specify Frequency-Domain Design Requirements

Select a row and click lLI to delete a bound edge.
In the Select Systems to Bound section, select the linear systems to which this

requirement applies.

Linear systems are defined by snapshot times at which the model is linearized and
sets of linearization I/0O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in the
list. Select the corresponding check box.

If you have not created a linearization input/output set, click ILI to open the
Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/0
Sets”.

For more information on linearization, see “What Is Linearization?”.
Click OK.
A new variable with the specified name appears in the Design Optimization

Workspace of the Design Optimization tool window. A graphical display of the
requirement also appears in the Design Optimization tool window.

3-43

3 Response Optimization

3-44

pictune_demosSuim:1 [in], pictune_demaoiPlant: 1 [out, Open Loogp]

20k
Ty

=11 I

Magnituds (dB)

anfe

A00 b

-120
1}

45.....5
ank.d

4355

Phase (deg)

Aanfs

oos L H H s H
10" 10° 10" 10 10°
Frequency (radis)

8 (Optional) In the graphical display, you can:

“Move Constraints Graphically”

+ “Position Constraints Exactly”

Alternatively, you can use the Check Bode Characteristics block to specify bounds on the
magnitude of the system response. (Requires Simulink Control Design.)

Specify Bound on Closed-Loop Peak Gain

To specify an upper bound on the closed-loop peak response of a system:

1 In the Design Optimization tool, select Closed-Loop Peak Gain in the New list. A
window opens where you specify an upper bound on the closed-loop peak gain of the
system.

2 Specify a requirement name in the Name box.

3 Specify the upper bound on the closed-loop peak gain in the Closed-Loop peak
gain box.

Specify Frequency-Domain Design Requirements

In the Select Systems to Bound section, select the linear systems to which this
requirement applies.

Linear systems are defined by snapshot times at which the model is linearized and
sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a vector.
b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in the
list. Select the corresponding check box.

If you have not created a linearization input/output set, click lLI to open the
Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O
Sets”.

For more information on linearization, see “What Is Linearization?”.
Click OK.
A new variable with the specified name appears in the Design Optimization

Workspace of the Design Optimization tool window. A graphical display of the
requirement also appears in the Design Optimization tool window.

3-45

3 Response Optimization

3-46

pictune_demotSum:d [in], pidtune_demoPlant:1 [out,Open Loogp]

Open-Loop Gain (dB)

-200 L H T Lo ' o :
-360 =318 =270 =228 -180 -135 -90 -45]

Open-Loop Phasze (ded)

6 (Optional) In the graphical display, you can:

+ “Move Constraints Graphically”

+ “Position Constraints Exactly”

Alternatively, you can use the Check Nichols Characteristics block to specify bounds on
the magnitude of the system response. (Requires Simulink Control Design.)

Specify Lower Bound on Damping Ratio

To specify a lower bound on the damping ratio of the system:

1 In the Design Optimization tool, select Damping Ratio in the New list. A window
opens where you specify an upper bound on the damping ratio of the system.

2 Specify a requirement name in the Name box.

3 Specify the lower bound on the damping ratio in the Damping ratio box.

Specify Frequency-Domain Design Requirements

In the Select Systems to Bound section, select the linear systems to which this
requirement applies.

Linear systems are defined by snapshot times at which the model is linearized and
sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in the
list. Select the corresponding check box.

If you have not created a linearization input/output set, click lLI to open the
Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O
Sets”.

For more information on linearization, see “What Is Linearization?”.
Click OK.
A new variable with the specified name appears in the Design Optimization

Workspace of the Design Optimization tool. A graphical display of the requirement
also appears in the Design Optimization tool window.

3-47

3 Response Optimization

pictune_demotSum:d [in], pidtune_demoPlant:1 [out,Open Loogp]

Imaginary Axis (Seconds")

) 25 2 a5 A 05 o

Real Lxis (Seconds")

6 (Optional) In the graphical display, you can:

+ “Move Constraints Graphically”

+ “Position Constraints Exactly”

Alternatively, you can use the Check Pole-Zero Characteristics block to specify a bound
on the damping ratio. (Requires Simulink Control Design.)

Specify Upper and Lower Bounds on Natural Frequency

To specify a bound on the natural frequency of the system:

1 In the Design Optimization tool, select Natural Frequency in the New list. A
window opens where you specify a bound on the natural frequency of the system.

2 Specify a requirement name in the Name box.

3-48

Specify Frequency-Domain Design Requirements

Specify a lower or upper bound on the natural frequency in the Natural frequency
box.

In the Select Systems to Bound section, select the linear systems to which this
requirement applies.

Linear systems are defined by snapshot times at which the model is linearized and
sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in the
list. Select the corresponding check box.

If you have not created a linearization input/output set, click ILI to open the
Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O
Sets”.

For more information on linearization, see “What Is Linearization?”.
Click OK.
A new variable with the specified name appears in the Design Optimization

Workspace of the Design Optimization tool. A graphical display of the requirement
also appears in the Design Optimization tool window.

3-49

3 Response Optimization

3-50

pictune_demotSum:d [in], pidtune_demoPlant:1 [out,Open Loogp]

0B-., .- 048 034022 04 475

ara
15"

L I

Imaginary Axis (seconds")

A5

Yo 0aF eadl. 022
= s 4 s 0 0s

Real Lxis (Seconds")

6 (Optional) In the graphical display, you can:

“Move Constraints Graphically”
+ “Position Constraints Exactly”
Alternatively, you can use the Check Pole-Zero Characteristics block to specify a bound

on the natural frequency. (Requires Simulink Control Design.)

Specify Upper Bound on Approximate Settling Time

To specify an upper bound on the approximate settling time of the system:

1 In the Design Optimization tool, select Settling Time in the New list. A window
opens where you specify an upper bound on the approximate settling time of the
system.

2 Specify a requirement name in the Name box.

Specify Frequency-Domain Design Requirements

Specify the upper bound on the approximate settling time in the Settling time box.

In the Select Systems to Bound section, select the linear systems to which this
requirement applies.

Linear systems are defined by snapshot times at which the model is linearized and
sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in the
list. Select the corresponding check box.

If you have not created a linearization input/output set, click ILI to open the
Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O
Sets”.

For more information on linearization, see “What Is Linearization?”.
Click OK.
A new variable with the specified name appears in the Design Optimization

Workspace of the Design Optimization tool. A graphical display of the requirement
also appears in the Design Optimization tool window.

3-51

3 Response Optimization

3-52

pictune_demotSum:d [in], pidtune_demoPlant:1 [out,Open Loogp]

05— — - — T —
: - : 0z ‘088,
0.4-_:: .:. x
Dagd ' T F
03

Togss.

Imaginary Axis (seconds")

5:-0_99'8"""':”” :

03-
e] e -
) ; e X

: 7 oez L0Es
sk - 1 PR "l (- 1 Ll
-2 -1.8 -1.6 -1.4 -1.2 -1 -0 -0E -0.4 -0.2 u]

Real Lxis (Seconds")

6 (Optional) In the graphical display, you can:

“Move Constraints Graphically”

+ “Position Constraints Exactly”

Alternatively, you can use the Check Pole-Zero Characteristics block to specify the
approximate settling time. (Requires Simulink Control Design.)

Specify Piecewise-Linear Upper and Lower Bounds on Singular Values

To specify piecewise-linear upper and lower bounds on the singular values of a system:

1 In the Design Optimization tool, select Singular Values in the New list. A window
opens where you specify the lower or upper bounds on the singular values of the
system.

2 Specify a requirement name in the Name box.

Specify Frequency-Domain Design Requirements

Specify the requirement type using the Type list.

Specify the edge start and end frequencies and corresponding magnitude in the
Frequency and Magnitude columns, respectively.

Insert or delete bound edges.

Click ILIto specify additional bound edges.

Select a row and click ILI to delete a bound edge.

In the Select Systems to Bound section, select the linear systems to which this
requirement applies.

Linear systems are defined by snapshot times at which the model is linearized and
sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in the
list. Select the corresponding check box.

If you have not created a linearization input/output set, click lLI to open the
Create linearization I/0O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O
Sets”.

For more information on linearization, see “What Is Linearization?”.
Click OK.
A new variable with the specified name appears in the Design Optimization

Workspace of the Design Optimization tool. A graphical display of the requirement
also appears in the Design Optimization tool window.

3-53

3 Response Optimization

3-54

pictune_demofSum:1 [in], pictu
20 LRRARIRE A MALER T

ne_demoPlant:1 [out, Open Loogp]

T

Singular Yalues (dB)

I L i
10" 10
Freguency (racdis)

8 (Optional) In the graphical display, you can:

“Move Constraints Graphically”

+ “Position Constraints Exactly”

Alternatively, you can use the Check Singular Value Characteristics block to specify
bounds on the singular value. (Requires Simulink Control Design.)

Specify Step Response Characteristics
To specify step response characteristics:
1 You can apply this requirement to either a signal or a linearization of your model.

In the Design Optimization Tool, click New. To apply this requirement to a
signal, select the Step Response Envelope entry in the New Time Domain

Specify Frequency-Domain Design Requirements

Requirement section of the New list. To apply this requirement to a linearization
of your model, select the Step Response Envelope entry in the New Frequency
Domain Requirement section of the New list. The latter option requires Simulink
Control Design software.

A window opens where you specify the step response requirements on a signal, or
system.

Specify a requirement name in the Name box.

Specify the step response characteristics:

% Overshoot

L1 Vs % Settling
Final Value \/\\\//\.___L -

% Rise

Amplitude

% Undershoot

Initial Value K/ ¢ |

Rise Time Settling Time Time

+ Initial value: Input level before the step occurs
+ Step time: Time at which the step takes place
* Final value: Input level after the step occurs

+ Rise time: The time taken for the response signal to reach a specified percentage
of the step's range. The step's range is the difference between the final and initial

values.

* % Rise: The percentage used in the rise time.

3-55

3 Response Optimization

3-56

+ Settling time: The time taken until the response signal settles within a specified
region around the final value. This settling region is defined as the final step
value plus or minus the specified percentage of the final value.

* % Settling: The percentage used in the settling time.

% Overshoot: The amount by which the response signal can exceed the final
value. This amount is specified as a percentage of the step's range. The step's
range is the difference between the final and initial values.

% Undershoot: The amount by which the response signal can undershoot the
initial value. This amount is specified as a percentage of the step's range. The
step's range is the difference between the final and initial values.

4 Specify the signals or systems to be bound.

You can apply this requirement to a model signal or to a linearization of your
Simulink model (requires Simulink Control Design software).

* Apply this requirement to a model signal:

In the Select Signals to Bound area, select a logged signal to which you will
apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to
Log” on page 3-12, it appears in the list. Select the corresponding check-box.

If you haven’t selected a signal to log:

Click lLl A window opens where you specify the logged signal.

b Inthe Simulink model window, click the signal to which you want to add a
requirement.

Specify Frequency-Domain Design Requirements

Create 5ignal et~
Signal set: | Sig|

Signal

Mo signals have currently been selected.
Please go back to the model and dick on o |
a signal to select it

[

| ok || cancel || Help |

The window updates and displays the name of the block and the port number
where the selected signal is located.

Select the signal and click to add it to the signal set.

d Inthe Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

+ Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is linearized
and sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in
the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to open
the Create linearization I/O set dialog box.

3-57

3 Response Optimization

3-58

For more information on using this dialog box, see “Create Linearization I/O
Sets”.

For more information on linearization, see “What Is Linearization?”.
Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also appears in
the Design Optimization tool window.

Alternatively, you can use the Check Step Response Characteristics block to specify step
response bounds for a signal.

See Also

“Design Optimization to Meet Step Response Requirements (GUI)”

Specify Custom Requirements

To specify custom requirements, such as minimizing system energy:

1

w

In the Design Optimization tool, select Custom Requirement in the New list. A
window opens where you specify the custom requirement.

Specify a requirement name in the Name box.
Specify the requirement type using the Type list.

Specify the name of the function that contains the custom requirement in the
Function box. The field must be specified as a function handle using @. The function

must be on the MATLAB path. Click ‘i, to review or edit the function.

If the function does not exist, clicking li, opens a template MATLAB file.
Use this file to implement the custom requirement. The default function name is
myCustomRequirement.

(Optional) If you want to prevent the solver from considering specific parameter
combinations, select the Error if constraint is violated check box. Use this option
for parameter-only constraints.

See Also

During an optimization iteration, the solver evaluates requirements with this option
selected first.

If the constraint is violated, the solver skips evaluating any remaining
requirements and proceeds to the next iterate.

If the constraint is not violated, the solver evaluates the remaining requirements
for the current iterate. If any of the remaining requirements bound signals or
systems, then the solver simulates the model .

For more information, see “Skip Model Simulation Based on Parameter Constraint
Violation (GUI)”.

Note: If you select this check box, then do not specify signals or systems to bound. If
you do specify signals or systems, then this check box is ignored.

(Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your Simulink
model (requires Simulink Control Design software), or both.

Click Select Signals and Systems to Bound (Optional) to view the signal and
linearization I/O selection area.

* Apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the
requirement.

If you have already selected a signal to log, as described in “Specify Signals to
Log” on page 3-12, it appears in the list. Select the corresponding check box.

If you have not selected a signal to log:

Click lLI A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a
requirement.

3-59

3 Response Optimization

Create 5ignal et~
Signal set: | Sig|

Signal

Mo signals have currently been selected.
Flease go back to the model and dick an o =1
a signal to select it

| ok || cancel || Help |

The window updates and displays the name of the block and the port number
where the selected signal is located.

Select the signal and click to add it to the signal set.

d Inthe Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

+ Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is linearized
and sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in
the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to open
the Create linearization I/O set dialog box. For more information on using
this dialog box, see “Create Linearization I/O Sets”.

3-60

See Also

For more information on linearization, see “What Is Linearization?”.

7 Click OK.

A new variable, with the specified name, appears in the Design Optimization
Workspace of the Design Optimization tool. A graphical display of the requirement
also appears in the Design Optimization tool window.

See Also

* “Design Optimization to Meet a Custom Objective (GUI)” on page 3-112
* “Design Optimization to Meet Custom Signal Requirements (GUI)” on page 3-142

3-61

3 Response Optimization

Specify Design Variables

Before running the optimization, you must define the model parameters to optimize.
These parameters form the design variables set for optimization. By tuning these
parameters, Simulink Design Optimization software attempts to make the signals meet
the requirements.

Simulink Design Optimization software optimizes the response signals of the model

by varying the tuned parameters so that the response signals lie within the constraint
bound segments or closely match a specified reference signal. The design variables can be
scalar, vector, matrix, or an expression that evaluates to one of these values.

To specify the parameters to be tuned using the Design Optimization tool:
1 Inthe Design Variables Set list, select New.

A window opens where you specify design variables. All model parameters are
displayed in this window.

2 Select one or more parameter names and click
<]

to add the selected parameters to a design variables set.

Note: You can add the same parameter to multiple design variable sets.

3 (Optional) Specify design variable settings.

Setting Description Default

Variable The name of the parameter. Not an editable field

Value Value of the model parameter. This value is used |Current value of the parameter
by the optimization method as the initial value in the model. If you edit this
and is modified during optimization. column, click Update model

variable values to update the
values in the model.

Minimum |The minimum value or lower bound for the -Inf
parameter. You can edit this field to provide an
alternate minimum value.

3-62

Specify Design Variables

Sefting Description Default

Maximum |The maximum value or upper bound for the Inf
parameter. You can edit this field to provide an
alternate maximum value.

Scale During optimization, the design variables are Next power of 2 greater than the
scaled, or normalized, by dividing their current current value of the parameter
value by a scale value. You can edit this field to
provide an alternate scaling factor.

The check-box indicates whether the parameter is selected as an design variable
in the set. Select it if you want this parameter to be tuned during the optimization.
Deselect if you do not want this parameter to be tuned during the optimization

but you would like to keep it on the list of tuned parameters (for a subsequent
optimization).

Expand Variable Detail to see the block in the model that contains this parameter.
4 Click OK to create a design variable set.

Related Examples

. “Specify Independent Parameters to Optimize” on page 3-64

. “Optimize Parameters for Robustness (GUI)” on page 3-210

. “Update Model with Design Variables Set” on page 3-68

. “Export Design Variable Values for Specific Iteration” on page 3-93

3-63

3 Response Optimization

Specify Independent Parameters to Optimize

3-64

This example shows how to specify independent parameters, that do not appear explicitly
in the model, as optimization parameters.

Assume that the parameter Kint in the model srotutl is related to the parameters
X and y according to the relationship Kint=x+y. Also assume that the initial values of
X and y are 1 and -0.7, respectively. To tune X and y instead of Kint, first define these
parameters in the model workspace. To do this,

1 Open the Simulink model.

open_system("srotutl®)
2 Add the independent parameters to the model workspace, along with their initial
values.
+ Select View > Model Explorer from the srotutl window to open the Model
Explorer window.

In the Model Hierarchy tree, select srotutl > Model Workspace.

Specify Independent Parameters to Optimize

2] Model Explorer

File Edit View Tools Add Help
Pl 3 H ol =
Search: by Name * Mame:

Mode! Higrarchy [t

4 % Simulink Root
[Base Workspace
4 srotutl
E Model Workspace
E Code for srotutl
&) Advice for srotutl
ﬂ Simulink Design Verifier results
% Configuration (Active)

] Om
@ ¢ @z
G4 Search
| I[j:- Contents of: ...rkspace (only) Filter Contents
Column View: |Data Obje = | Show Details 0 object(s’ 'f('
MName Value Datalype Min Max Dimension
4 I (2
Contents | Search Results

= o)
Model Workspace
Workspace data
Data source: |MDLFile ~

Model arguments (for referencing this model):

= =

Select Add > MATLAB Variable to add a new variable to the model workspace.
A new variable with a default name Var appears in the Name column.

Double-click Var to make it editable and change the variable name to X. Edit the

initial Value to 1.

Repeat steps 3 and 4 to add a variable y with an initial value of -0.7.

The Model Explorer window resembles the following figure.

3-65

3 Response Optimization

=] Model Explorer [E=H =™
File Edit View Tools Add Help
B3 H o EH % &=
Search: by Name ~ Mame: @4 Search
Mode! Higrarchy @ ™ = Contents of: ...l Warkspace™ {only) Filter Contents Model Workspace
Workspace data
4 Simulink Root =
% Column View: |Data Objects v | Show Details 2 obiject(s A
LI Base Warkspace Data source: |MDLFile -
4 srotutl* Name Value DataType Min
E Model Workspace* H 1
E Code for srotuti * P Model arguments (for referencing this model):
() Advice for srotutl == !
ﬂ Simulink Design Verifier results
% Configuration (Active}
Contents | Search Results d L C

3 Define a Simulation Start function that runs before each simulation of the model.
This Simulation Start function defines the relationship between the dependent
parameters in the model and the independent parameters in the model workspace.

In the srotutl model window, select File > Model Properties > Model
Properties.

* In the Model Properties window, click the Callbacks tab.

To enter a Simulation start function, select StartFen, and type the name of
a new function. For example, type srotutl_start in the Simulation start
function panel. Then, click OK.

* Create a MATLAB file named srotutl_start.

The content of the file defines the relationship between the parameters in the

model and the parameters in the workspace. For this example, the content
resembles the following:

3-66

Specify Independent Parameters to Optimize

wks = get_param(gcs, “"ModelWorkspace®)
X = wks.evalin("x")

y = wks.evalin("y")

Kint = x+y;

Note: You must first use get_param to get the variables independent variables,
X and y, from the model workspace. Then define the dependent variable, Kint, in
terms of the independent variables.

When you add a new design or uncertain parameter, X and y appear in the dialog box.

Caution Avoid adding independent parameters together with their corresponding
dependent parameters to the lists of tuned and uncertain parameters. Otherwise, the
optimization could give incorrect results. For example, when a parameter ¢ depends on
the parameters a and b avoid adding all three parameters to the lists.

Related Examples
. “Specify Design Variables” on page 3-62

3-67

3 Response Optimization

Update Model with Design Variables Set

3-68

This example shows how to update a model with a set of design variables.

Open the Simulink model and load the preconfigured Design Optimization tool session.

load("pidtune_demo_sdosession_update_dv.mat®)
sdotool (SDOSessionData)

The Design Optimization tool opens and loads the preconfigured session. In the Design
Optimization Workspace, DesignVarsl is a set of tuned design variables.

In the Design Variables Set list, select the design variable set, DesignVarsl.

4 Design Optimization - pidtune_demo - Time plot 2

DESIGH OPTIMEZATION RESPONSE OPTIMIZATION

Design Variables Set: | @] Designvars + P L New =
EXISTIMG DESIGM VARIABLES SETS

@ Designiars

@ Designifarsl

Uncertain Variables Set:

VARLA

Data Browser

Sear CREATE NEW SET OF DESIGM VARIABLES
[B

Open the Edit dialog box.

Click £ for the Design Variable Set list.
Select the variables you want to update in the model.

For this example, select Kd, Ki, and Kp.

Update Model with Design Variables Set

0.3624295...

01170876...
0.2855104...

Update model variables]

B Variable Detait

Click Update model variables.
Plot the model response.

In the Response Optimization tab, click Plot Current Response.

Related Examples
. “Export Design Variable Values for Specific Iteration” on page 3-93

3-69

3 Response Optimization

General Options

In this section...

“Accessing General Options” on page 3-70
“Progress Options” on page 3-70
“Result Options” on page 3-71

Accessing General Options

You can set optimization progress and result options. To set these options, click Options
in the Design Optimization tool. A window opens. Select the General Options tab.

General Options | Optimization Optionsl Parallel Options|

Progress Options
Show cptimization progress window during optimization

Update plots during cptimization

Result Options

Update model at end of optimization

[7] Save optimization termination information
Design variable sets:

@ Overwrite optimized variable values in design variable set

() Save optimized variable values as new design variable set

| OK || Cancel || Help |

Progress Options

You can specify options related to optimization progress using the options in the
Progress Options area.

3-70

General Options

Progress Options

| Show optimization progress window during optimization

| Update plots during optimization

* Show optimization progress window during optimization

Opens an optimization progress window during optimization. The window displays
information such as constraint violations and cost function if Display level

is Iteration. The window is updated at the end of the optimization with the
termination information such as whether the optimization converged.

+ Update plots during optimization

Updates model response and design variable plots at each optimization iteration.

Result Options
You can specify options for optimization results in the Result Options area.
Result Opticns
¥ | Update model at end of optimization

/| Save optimization termination information
Design variable sets:

@ Overwrite optimized variable values in design variable set

Save optimized variable values as new design variable set

+ Update model at end of optimization

Updates optimized parameter values in the Simulink model after the optimization
terminates.

+ Save optimization termination information

Saves termination information returned by the optimization solver as a variable
named info in the Design Optimization Workspace. info is a structure with one
or more of the following fields:

3-71

3 Response Optimization

F — Optimized cost (objective) value.

Cleqg — Optimized nonlinear inequality constraint violations.

The field appears if the optimization problem includes a nonlinear inequality
constraint.

The value 1s a mx1 vector. Positive values indicate that the constraint has not been
satisfied. Check exitflag to confirm that the optimization succeeded.

Ceq — Optimized nonlinear equality constraint violations.

The field appears if the optimization problem includes a nonlinear equality
constraint.

The value is a double rx1 vector. Any nonzero values indicate that the constraint
has not been satisfied. Check exitflag to confirm that the optimization
succeeded.

Gradients — Cost and constraint gradients at the optimized parameter values.
See “How the Optimization Algorithm Formulates Minimization Problems” on how
the solver computes gradients.

This field appears if the solver specified in the Method property of
sdo.OptimizeOptions computes gradients.

The value 1s a structure.

exitflag — Integer identifying the reason the algorithm terminated. See
fmincon, patternsearch and fminsearch for a list of the values and the
corresponding termination reasons.

iterations — Number of optimization iterations

SolverOutput — A structure with solver-specific output information. The fields
of this structure depends on the optimization solver specified in the Method
property of sdo.OptimizeOptions. See fmincon, patternsearch and
fminsearch for a list of solver outputs and their description.

Stats — A structure that contains statistics collected during optimization, such as
start and end times, number of function evaluations and restarts.

* Design variable sets

3-72

Overwrite optimized variable values in design variable set

General Options

Overwrites the optimized model parameter values in the design variable set

variable used in the optimization. You can see the updated values in the Value
field.

w Design Optimization Workspace

Mame Value

e DesignVars <3xl para...

* Variable Preview

DesignVars(l,l) =

Name: "KEd'
Minimum: 0
Maximum: Inf
Free: 1
Scale: 1
Info: [1xl struct]

Save optimized variable values as new design variable set

Creates a new variable in the Design Optimization Workspace that contains
the optimized parameter values. To update the model with the optimized
parameter values, select the variable in the Design Variables Set list. Open the

Edit dialog box by clicking Z . Select the parameters of interest and click Update
model variables.

3-73

3 Response Optimization

Optimization Options

In this section...

“Accessing Optimization Options” on page 3-74
“Selecting Optimization Methods” on page 3-75

“Selecting Optimization Termination Options” on page 3-76

“Selecting Additional Optimization Options” on page 3-77

Accessing Optimization Options

You can set several options for the optimization. These options include the optimization
methods and the tolerances the methods use.

To set optimization options, click Options in the Design Optimization tool. A window
opens. Select the Optimization Options tab.

| General Options|§ Optimization Option5§| Parallel Optionsl Linearization Options|

Optimization method

Method: iGradient descent 'i Algorithm: iSequentiaI Quadratic Pregramming vi
Optimization options

Parameter tolerance: 0.001 Function telerance: 0,001

Constraint tolerance: 0.001 Maximum iterations: |100

[7] Look for maximally feasible solution

Display level: :Iteration -

Restarts:

0

3-74

| 0K || Cancel |[Help |

Optimization Options

Selecting Optimization Methods

Both the Method and Algorithm options in the Optimization method area define the
optimization method.

Optimization method

Method:

Gradient descent A

Algorithm:

The choices for the Method option are:

Sequential Quadratic Programming -

Gradient descent (default) — Uses the Optimization Toolbox function fmincon to
optimize the response signal subject to the constraints.

The Algorithm options for Gradient descent are:

Algorithm Option

Learn More

Sequential Quadratic Programming
(default)

“fmincon SQP Algorithm” in the
Optimization Toolbox documentation.

Active-Set

“fmincon Active Set Algorithm” in the
Optimization Toolbox documentation.

Interior-Point

“fmincon Interior Point Algorithm” in the
Optimization Toolbox documentation.

Trust-Region-Reflective

“fmincon Trust Region Reflective
Algorithm” in the Optimization Toolbox
documentation.

Pattern search — Uses the Global Optimization Toolbox function
patternsearch, an advanced direct search method, to optimize the response. This
option requires the Global Optimization Toolbox.

Simplex search — Uses the Optimization Toolbox function fminsearch, a direct
search method, to optimize the response. Simplex search is most useful for simple
problems and is sometimes faster than Gradient descent for models that contain

discontinuities.

For more information on the problem formulations for each optimization method, see
“How the Optimization Algorithm Formulates Minimization Problems” on page 3-3.

3-75

3 Response Optimization

Selecting Optimization Termination Options

Use the Optimization options panel to specify when you want the optimization to
terminate.

Optimization options
Parameter tolerance: 0.001 Function tolerance: |0.001
Constraint tolerance: 0.001 Maximurmn iterations: | 100

Look for maximally feasible solution

+ Parameter tolerance: The optimization terminates when successive parameter
values change by less than this number. For more details, refer to the discussion
of the parameter TolX in the reference page for the Optimization Toolbox function
fmincon.

+ Constraint tolerance: This number determines the maximum limit by which the
constraints can be violated, and still allow a successful convergence.

* Function tolerance: The optimization terminates when successive function values
are less than this value. Changing the default Function tolerance value is only
useful when you are tracking a reference signal or using the Simplex search
method. For more details, refer to the discussion of the parameter TolFun in the
reference page for the Optimization Toolbox function fmincon.

+ Maximum iterations: The maximum number of iterations allowed. The optimization
terminates when the number of iterations exceeds this number.

* Look for maximally feasible solution: When selected, the optimization continues
after it has found an initial, feasible solution, until it finds a maximally feasible,
optimal solution. When this option is unselected, the optimization terminates as soon
as it finds a solution that satisfies the constraints and the resulting response signal
sometimes lies very close to the constraint segment. In contrast, a maximally feasible
solution is typically located further inside the constraint region.

Note: If selected, the software ignores this option when tracking a reference signal.

By varying these parameters you can force the optimization to continue searching for a
solution or to continue searching for a more accurate solution.

3-76

Optimization Options

Selecting Additional Optimization Options

At the bottom of the Optimization Options panel is a group of additional optimization
options.

Display level: Tteration -

Restarts: 1]

+ “Display Level” on page 3-77
* “Restarts” on page 3-78

Display Level

The Display level option specifies the form of the output that appears in the
Optimization Progress window. The options are:

+ lIterations (default) — Displays information after each iteration

* OFfFf — Turns off all output display

+ Notify — Displays output only if the function does not converge

* Final — Displays only the final output

For more information on the type of iterative output that appears for the method you
selected in Method, see the discussion of output for the corresponding function.

Method Function Output Information

Gradient fmincon fmincon section of “Function-Specific

descent Headings” in the Optimization Toolbox
documentation

Simplex search |fminsearch fminsearch section of “Function-Specific
Headings” in the Optimization Toolbox
documentation

Pattern search |patternsearch “Display to Command Window Options”
in the Global Optimization Toolbox
documentation

3-77

3 Response Optimization

Restarts

In some optimizations, the Hessian may become ill-conditioned and the optimization does
not converge. In these cases, it is sometimes useful to restart the optimization after it
stops, using the endpoint of the previous optimization as the starting point for the next
one. To automatically restart the optimization, indicate the number of times you want to
restart in this field.

3-78

Create Linearization 1/O Sets

Create Linearization 1/O Sets

This example shows how to create a linearization input/output set using the Design
Optimization Tool.

You create a linearization input/output set using the Create Linearization I/O Set dialog
box. This dialog box may be accessed in two ways:

* In the Design Optimization tool, select Linearization I/Os in the New drop-down
list.

In a requirement dialog box, in the Select Systems to Bound area, click .

Create Linearization I/O Set
To create a new linearization I/0 set:

1 In your Simulink model, select one or more signals that you want to define as a
linearization input or output point.

The selected signals appear in the Create linearization I/O set dialog box under
Currently selected signals.

: lincanization 1/
Variable name:

Filter by narme P

g Currently selected signals
“-= magball/Controller: 1

2 In the Create linearization I/O set dialog box, click a signal name under Currently
selected signals.

3-79

3 Response Optimization

3-80

3 Click Add. The signal appears in the list of Analysis I/Os.

Variable name: |10s1

Filter by name R Analysis [/Os
@ Currently selected signals Active Signal Description Configuration
[magball/Controller: 1 Block: magball/Centreller
Port: 1 r - \
Siznal MNarme: +%_ Input Perturbation v\

r\\"“—-“ —

4 Select the linearization point type for a signal from the Configuration drop-down
list for that signal. For example:

+ If you want the selected signal to be a linearization output point, select Output
Measurement.

+ If you want the signal to be an open-loop output point, select Open-1oop
Output.

5 Repeat steps 1-4 for any other signals you want to define as linearization I/O points.

Tip To highlight in the Simulink model the blocks that are included in the
linearization specified by the current list of Analysis I/Os, click Highlight.

6 After you define all the signals for the I/O set, enter a name for the I/0 set in the
Variable name field located at the top-left of the window.

7 Click OK.

Linearization Options

Linearization Options

In this section...

“Accessing Linearization Options” on page 3-81

“Configuring Linearization Options” on page 3-81

Accessing Linearization Options

If you have Simulink Control Design, you can set several options for linearization. These
options include the linearization methods and the sample time of the linear systems.

To set linearization options, click Options in the Design Optimization tool. A window
opens. Select the Linearization Options tab.

| General Optionsl Optimization Optionsl Parallel Options|§ Linearization Options |

[[] Use exact delays
Linear system sample time: auto
Sample time rate conversion method: iZero—Order Haold vi
Prewarp frequency (rad/s): 10
[oK] [Cancel] [Help]

Configuring Linearization Options

Models with Time Delays

Simulink Control Design lets you choose whether to linearize models using exact
representation or Pade approximation of continuous time delays. How you treat time

delays during linearization depends on your nonlinear model.

Simulink blocks that model time delays are:

3-81

3 Response Optimization

3-82

* Transport Delay block

* Variable Time Delay block

* Variable Transport Delay block
* Delay block

* Unit Delay block

By default, linearization uses Pade approximation for representing time delays in your
linear model.

Use Pade approximation to represent time delays when:

* Applying more advanced control design techniques to your linear plant, such as LQR
or H-infinity control design.

* Minimizing the time to compute a linear model.
Specify to linearize with exact time delays for:

* Minimizing errors that result from approximating time delays
* PID tuning or loop-shaping control design methods in Simulink Control Design

* Discrete-time models (to avoid introducing additional states to the model)

The software treats discrete-time delays as internal delays in the linearized model.
Such delays do not appear as additional states in the linearized model.

Specify How Delays are Treated

To specify whether the linearization should approximate delays or use them exactly, set
the Use exact delays check box appropriately.

Linearization Sampling Time

To specify the sampling time of the linearized model, use the Linear system sample
time box. By default, the software chooses the slowest applicable sampling time. Use O to
specify a continuous-time linear model.

Linearization Rate Conversion Method

When you linearize models with multiple sample times, such as a discrete controller with
a continuous plant, a rate conversion algorithm generates a single-rate linear model. The
rate conversion algorithm affects linearization results.

Linearization Options

Rate Conversion Method

When to Use

Zero-Order Hold

Use when you need exact discretization of
continuous dynamics in the time-domain
for staircase inputs.

Tustin

Use when you need good frequency-domain
matching between a continuous-time
system and the corresponding discretized
system, or between an original system and
the resampled system.

Tustin with Prewarping

Use when you need good frequency
domain matching at a particular frequency
between the continuous-time system and
the corresponding discretized system,

or between an original system and the
resampled system.

Upsampling when possible (Zero-Order
Hold, Tustin, and Tustin with Prewarping)

Upsample discrete states when possible

to ensure gain and phase matching of
upsampled dynamics. You can only
upsample when the new sample time is an
integer multiple of the sampling time of the
original system. Otherwise, the software
uses an alternate rate conversion method.

3-83

3 Response Optimization

Plots in the Design Optimization Tool

3-84

In this section...

“Adding Plots in Design Optimization Tool” on page 3-84
“Plotting Current Response” on page 3-84

“Plotting Intermediate Steps” on page 3-84

“Modifying Plot Properties” on page 3-84

“Plot Types” on page 3-86

“Export Design Variables and Requirement Values for an Iteration” on page 3-89

Adding Plots in Design Optimization Tool

To create a new plot or to add to an existing plot in the Design Optimization Tool, choose
the variable to plot in the Data to Plot list. Then select the plot type using the Add Plot
list. The Add Plot list has entries for the supported plot types for the given plot variable.

Plotting Current Response

To display the current response, click Plot Current Response in the Response
Optimization tab or the Figure tab of the Design Optimization tool. The current
response appears as a thick line.

Plotting Intermediate Steps

To turn on, or off, the display of the response signal at intermediate steps during the
optimization, right-click within the white space in the plot and select Responses

> Show Iteration Responses. The response at an intermediate step is based on
parameter values at that intermediate point in the optimization.

Modifying Plot Properties
Modifying Properties of Response Plots

Right-click the white space in a plot and select Axes Properties to open the Property
Editor dialog box.

This figure shows the Property Editor dialog box for a step response.

Plots in the Design Optimization Tool

4}. Property Editor: sldo'_modell/Plant:1 EI@

Labelz Limits Units Style Options

Labels
Title: =ldot_model! Plant: 1

X-Label Time

W-Label Amplitude

[Cloze] [Help]

In general, you can change the following properties of response plots.

Labels — Titles and X- and Y-labels

To specify new text for plot titles and axis labels, type the new string in the field next
to the label you want to change. The label changes immediately as you type, so you
can see how the new text looks as you are typing.

Limits — Numerical ranges of the x- and y- axes

Default values for the axes limits make sure that the maximum and minimum x and y
values are displayed. If you want to override the default settings, change the values in
the Limits pane fields. The Auto-Scale check box automatically clears if you click a
different field. The new limits appear immediately in the response plot.

To reestablish the default values, select the Auto-Scale check box again.

Units — Units where applicable (e.g., rad/s to Hertz). If you cannot customize units,
the Property Editor displays that no units are available for the selected plot.

Style — Show a grid, adjust font properties, such as font size, bold and italics, and
change the axes foreground color

Options — Change options where applicable. These include peak response, settling
time, phase and gain margins, etc. Plot options change with each plot response
type. The Property Editor displays only the options that make sense for the selected
response plot. For example, phase and gain margins are not available for step
responses.

3-85

3 Response Optimization

Plot Types

+ “Response Plots” on page 3-86
+ “Spider Plots” on page 3-87

+ “Iteration Plots” on page 3-88

Response Plots

You can view model signals and the requirements applied to the signal using a response
plot. You can also plot the frequency response of a system (requires Simulink Control

Design).

The response plot shows the system response as it varies during optimization. You can
also view the uncertain system responses in the plot.

pidtrack_demofStep Response
Specifications

Amplitude

Tirme [Eeconds)

3-86

Plots in the Design Optimization Tool

Tip To select the responses and systems displayed in a given plot, right-click on the plot
and use the Systems and Responses menu.

Spider Plots

You can compare the values of design variable sets or evaluated requirements using a
spider plot.

Spider plots depict multivariate data using an axis for each variable. The various axes
are arranged clockwise and have a common intersecting point, as this example shows:

RegValues, Reg\/aluesi

Reg\Values
—=— ReqValues1

DampingRatio(2,1)
0. “sg 21

MinFaiureRate 0124 DampingRatio(1,1}
0.828

Bandwidth
144 1.44

0.124
-0.828

-0.828

Tip To view only some of the requirement values in a given plot, right-click on the plot
and select the requirements in the Show list.

3-87

3 Response Optimization

For information on using a spider plot to compare design variables sets or evaluated
requirements, see “Compare Requirements and Design Variables Using Spider Plot” on

page 3-90
lteration Plots

You can plot the values of design variables and requirements as they vary during
optimization using an iteration plot.

Iteration plots depict the value of the plot variable(s) for each iteration. The x-axis
represents the iteration number, as this example shows:

DesignVars

Scaled Value

kteration

You can export the values of a plotted variable for a given iteration. For more
information, see “Export Design Variables and Requirement Values for an Iteration” on

page 3-89.

Tip To view scaled values of the plotted variable(s), right-click on the plot and select
Show scaled values.

3-88

Plots in the Design Optimization Tool

Export Design Variables and Requirement Values for an lteration

To export the values of design variables or requirements:

1

Open the Export Iteration Data dialog box.

Right-click on the iteration plot and select Export.
Specify the plotted variable that you want to export using the Data to export list.

Specify the iteration for which you want to export data in the Iteration(s) to
export box.

To specify multiple iterations, use a vector of integers. For example, [0 2 5].

Specify the variable name for the exported data using the Export to a variable
named box.

Export the data to the Design Optimization Workspace.

Click OK. The exported data variable appears in the Design Optimization
Workspace.

Note: The iteration number is added as a suffix to the exported data variable name.

3-89

3 Response Optimization

Compare Requirements and Design Variables Using Spider Plot

3-90

This example shows how to use a spider plot to compare requirement evaluations before
and after optimizing the response. You can use a similar procedure to compare the values
of sets of design variables.

Open the Simulink model and load the pre-configured Design Optimization Tool session.

For this example, which uses a distillation column model, the step response requirements
are preconfigured and loaded in the model workspace.

1 Open the distillation model.
sys = "distillation_demo";
open_system(sys)

2 Open the Design Optimization Tool.

In the Simulink model window, select Analysis > Response Optimization.

Alternatively, click the Response Optimization GUlI with preloaded data
block in the model and skip the next step.

3 Load the preconfigured Design Optimization Tool session.

Click the Design Optimization tab. In the Open drop-down list, select Open from
model workspace. A window opens where you select the Design Optimization Tool
session to load. Select distillation_optim and click OK.

The preconfigured step response requirements are loaded in the Design Optimization
Tool.

Evaluate the requirement before optimization.
In the Response Optimization tab, click Evaluate Requirements.

A new variable, ReqValues, containing the evaluation of the requirements appears in
the Design Optimization Workspace.

When optimizing the model response, you create a set of requirements that it must
satisfy. If the requirements are violated, meaning that they evaluate to nonnegative
values, the design variables must be optimized. After the optimization, you can compare
the original requirement value with the requirement evaluated using the optimized
design variable values.

Compare Requirements and Design Variables Using Spider Plot

Plot the requirement value before optimization.

1 In the Data to Plot list, select ReqValues.
2 Inthe Add Plot list, select Spider plot.

RegWalues
—=— Heg\Values
I H ol
1 g 0E 04487 ¢
K 0317 0T
L 0882 Y
P 0.425
M = C
0.619
0.343
N B
0.913
A
2 2
0.243
0818
D.582
DE19
£0.852
D425 0317
2 058
2779 r
058 padg DE

The plot has an axis for each edge-and-signal combination defined in the
distillation_demo/Desired Step Response check block. Points on each axis
represent the violation for that signal-edge combination and the plot connects these
points to form a closed polygon representing the initial design. Note that some points
are negative, representing satisfied constraints, and some positive, representing violated
constraints.

Optimize the model.
Click Optimize.

A new variable, ReqValuesl, containing the evaluation of the requirements using the
optimized design variables appears in the Design Optimization Workspace.

3-91

3 Response Optimization

Compare the requirement values before and after optimization.

1 Inthe Data to Plot list, select ReqValuesl.
2 Inthe Add Plot list, select Spider plot 1.

RegValues, RegWalues1

RegValues
RegValues1
I H o .G
1 o 0E 04487 ok
K 0317 0T
| Des2 0
05 0.425
M = C
0.619
0.343
B
0.919
A
2 2
0243
0818
D.582
0819
0852
0425 0317
-z 0.561
0779 I
058 padg DE

The optimized requirement values, ReqValuesl, are all negative or zero, indicating that
all the constraints are satisfied.

More About

“Export Design Variable Values for Specific Iteration” on page 3-93

3-92

Export Design Variable Values for Specific lteration

Export Design Variable Values for Specific lteration

This example shows how to export the design variable values for a specific optimization
iteration.

During optimization, the optimization solver simulates the model using a different set of
design variables at each iteration. After the optimization completes, you can export the
values for an iteration from the iteration plot of the design variable set.

For this example, load a preconfigured Design Optimization tool session. Optimize the
model, and export the design variable set values for the third iteration.

Open the Simulink model and load the preconfigured Design Optimization tool session.

load("distillation_demo_sdosession_export_iter_dv.mat")
sdotool (SDOSessionData)

The Design Optimization tool opens and loads the preconfigured session. Iteration Plot
1 is configured to plot the values of DesignVars for each optimization iteration.

Click Optimize.

The optimization completes after four iterations.

Select the iteration plot of the design variable set.

Click Iteration plot 1.

Open the Export Iteration Data dialog box.

Right-click on the iteration plot, and select Export.

Export lterationData
Data to export: :Design‘u‘ars -

Iteration(s) to export: 4

Export to a variable named: |DesignVars

| ok || Cancel || Help |

3-93

3 Response Optimization

Specify details regarding exporting the design variable set data:

* In the Data to export list, select DesignVars.

* In the Iteration(s) to export box, enter 3.

To specify multiple iterations, use a vector of integers. For example, [0 2 5].

* Inthe Export to a variable named box, enter DesignVars_iter.
Export the design variable values set to the Design Optimization Workspace.

Click OK. The exported data variable, DesignVars_iter_3, appears in the Design
Optimization Workspace.

Note: You will see the iteration number suffixed to the exported data variable name.

Related Examples
. “Update Model with Design Variables Set” on page 3-68
. “Compare Requirements and Design Variables Using Spider Plot” on page 3-90

More About

. “Iteration Plots” on page 3-88

3-94

Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

Design Optimization to Meet Time- and Frequency-Domain
Requirements (GUI)

This example shows how to tune a controller to satisfy time- and frequency-domain
design requirements using the Design Optimization tool.

The example requires Simulink® Control Design™.
Aircraft Longitudinal Flight Control Model

Open the Simulink model.

sSys = "sdoAircraft”;
open_system(sys);

Aircraft Longitudinal Flight Control

This demonstration models a flight control algorithm
of an aircraft.

Group 1
é Signal 1 #| Sitick, in . .
1 widot, fizec” #luudot, fiisec”
—™|q, radisechond, deg > G, deg
Pilat Ta.st1 ¢
r*c, rad
— Actustor . . |
Controller Model qdot, radizec” Plqdot HzPilot, g MeFilot, g
Mz Filot, g
> 2w wust, fiizec
q, radisec
q. radisec ¥, radizec
I
wiust Filot G-force — =
g | Pl qGust, radisec | calculation H‘\\h
qGust w, 1ad _
i Pilet G R
Al e 1 ilot G Response
Dryden Wind et)
Gist Modek » hg D"h“:;"f slphs, rad
spha, rad
— — =5
» l— L —
» j | ___H\H_
Alpha Response Pitch Rate Loop

Copyright 1220-2012 The MathWeorks, Inc.

The aircraft model is based on the Simulink slexAircraftExample model. The model
includes:

3-95

3 Response Optimization

3-96

+ Subsystems to model aircraft dynamics (Aircraft Dynamics Model), wind gusts
(Dryden Wind Gust Models), and pilot G-forces (Pilot G-force calculation).

+ A step change applied to the aircraft joystick at 1 second into the simulation that
causes the aircraft to pitch upward.

Controller Design Problem

You tune the controller gains to meet the following time- and frequency-domain design
requirements:

+ Angle-of-attack alpha response to a step change in the joystick has a rise time of less
than 1 second, less than 1% overshoot, and settles to within 1% of steady state within
less than 5 seconds

+ Pitch-rate control loop has good tracking below 1 rad/s and 20db noise rejection above
100 rad/s

* Closed loop response from joystick to pilot G-Force is below 0db above 5 rad/s.

These requirements reduce the high frequency G-forces experienced by the pilot in
response to joystick changes while still maintaining flight performance.

The model includes the following blocks (from Simulink® Design Optimization™ and
Simulink Control Design Model Verification libraries):

+ Alpha Response specifies the alpha step response requirement.

Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

Check Step Response Characteristics
Assert that the input signal satisfies bounds specified by step response characteristics.

Bounds Assertion

Include step response bound in assertion

Step time (seconds): 1

Initial value: 0 Final value: 0.5
Rise time (seconds): 1 o Rise: 80
Settling time (seconds): 5 %o Settling: 1
% Overshoot: 1 %% Undershoot: 1

Enable zero-crossing detection

Show Plot | ("] Show plot on block open [Response Optimization...

[OK][Cancel ” Help Apply

+ Pitch Rate Loop specifies the pitch-rate performance requirement.

The linearization inputs/outputs are already selected in the Linearizations tab. The
pitch-rate loop starts from the input of the controller (the controller error signal) and
ends at the output of the pitch-rate sensor. The angle-of-attack loop is opened signal so
that the block only computes the pitch-rate loop response. The linear system is computed
at a simulation time of 0.

3-97

3 Response Optimization

Bode Plot

Compute and display a linear system on a Bode plot. You can also specify
bounds on the linear system and assert that the bounds are satisfied.

Linearizations | Bounds | Logging | Assertion

Linearization inputs/outputs:

Block : Port : Bus Element Configuration
sdodircraft/Controller/error @ 1 Input Perturbation
sdoAircraft/Controller/Kq : 1 Open-loop Output
sdodircraft/Controller/Ka @ 1 Loop Break
L I 5

Linearize on: | Simulation snapshots -

Snapshot times: [0]

Trigger type: Rising edge o

» Algorithm Options

P Labels

3-98

"] Show plot on block open Response Optimization...

Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

The Bounds tab specifies the following pitch-rate loop shape requirements:

Greater than 20db over the range 0.01 rad/s to 0.1 rad/s

Greater than 0db over the range 0.1 rad/s to 1 rad/s

Less than -20db over the range 100 rad/s to 1000 rad/s

3-99

3 Response Optimization

Bode Plot

Compute and display a linear system on a Bode plot. You can also specify
bounds on the linear system and assert that the bounds are satisfied.

Linearizations | Bounds | Logging | Assertion

"] Include upper magnitude bound in assertion
Frequencies (rad/s): [100 1000]

Magnitudes (dB): [-20 -20]

Include lower magnitude bound in assertion
Frequencies (rad/s): [0.01 0.1; 0.1 1]

Magnitudes (dB): [20 20; 0 0]

Show Plot | [_| Show plot on block open |Respnnse Optimization...

‘)- [0K H Cancel || Help Apply

3-100

Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

+ Pilot G Response specifies the G-force requirement.

The linearization inputs/outputs are already selected in the Linearizations tab. The
linear system is computed at a simulation time of 0.

3-101

3 Response Optimization

Bode Plot

Compute and display a linear system on a Bode plot. You can also specify
bounds on the linear system and assert that the bounds are satisfied.

Linearizations | Bounds | Logging | Assertion

Linearization inputs/outputs:

Block : Port : Bus Element Configuration

Input Perturbation

sdoAircraft/Pilot G-force calculati... ‘Output heasurement

sdodircraft/Pilot : 1

Linearize on: | Simulation snapshots -

Snapshot times: [0]

Trigger type: Rising edge o

» Algorithm Options

P Labels

3-102

"] Show plot on block open Response Optimization...

Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

The Bounds tab specifies the G-force requirements of less than 0db over the range 5 rad/
s 100 rad/s.

3-103

3 Response Optimization

3-104

Bode Plot

Compute and display a linear system on a Bode plot. You can also specify
bounds on the linear system and assert that the bounds are satisfied.

Linearizations Bounds Logging Assertion

Include upper magnitude bound in assertion
Frequencies (rad/s): [5 100]

Magnitudes (dB): [0 0]

"] Include lower magnitude bound in assertion
Frequencies (rad/s): []

Magnitudes (dB): [1

Show Plot | [_| Show plot on block open |Fiespc-nse Optimization...

k)’ [0K ” Cancel || Help Apply

Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

Open the Design Optimization Tool

Open the Design Optimization tool to configure and run design optimization problems
interactively. Click Response Optimization on the Block Parameters dialog of Alpha
Response, Pitch Rate Loopor Pilot G Response block. Alternatively, type
sdotool ("sdoAircraft”). To show multiple requirement plots at the same time, use
the plot layout widgets at the top-right of the tool.

o EEPEIEF T

] None = New w \ EE |> %
Design Variables Set: y B E.—.@ Data to Plot: i @ ot
Evaluate Ho data selected ~ Add Plot Plot Current ons Optimize ~ Close
Uncertain Variables Set: None w | = @ Select Requirements B Response = Tab
VARIABLES REQUIREMENTS PLOTS OPTIMIZATION CLOSE
Diata Browser ® Timeplotl = | Bodeplotl x| Bodeplot2 =
Search workspace varizbles =i Tirme plot 1 O X |Bodeplotl 0O x
w MATLAB Workspace (0 There is no data for sdoAircraft/Alpha Respense, use s | ‘| There is no data for sdoAircraft/Filet G Response, use 3
O TR TS ESHOTSe s e
MName Value 1
0s H H] N
04 -

Magnitude (dB)

£ 03-
2 E
w Model Workspace (sdofircraft) E‘l D2t
MName Value T
[Beta 426.4352 - 0 —
H Gamma 0.0100 = 11| S W T
Hka 06770 Z ° B
- K -1.7460 — Bode plot 2 o x
w Design Optimization Workspace (4| There is no data for sdoAlrcrafUPitch Rate Loop, use
OO AT T T T
MName Value 20

Magnitude (8]
=1

)
=3

w Variable Preview

Phase (ck

The tool detects the requirements specified in the Model Verification blocks and
automatically includes them as requirements to satisfy.

Specify Design Variables
Specify the following model parameters as design variables for optimization:

* Controller gains Ki and KF

3-105

3 Response Optimization

3-106

Pitch-rate sensor gain Kq

Alpha sensor gain Ka

In the Design Variables Set drop-down list, select New. A dialog to select model
parameters for optimization opens.

Select Ki, KF, Kg and Ka. Click << to add the selected parameters to the design variables
set.

Specify minimum and maximum gain values, the Ki and KF values must remain negative
while Ka and Kg must remain positive.

Press Enter after you enter the values.

Variable Value | Minimum| Maximum| Scale
Ka 0.677000...| 0.001 Inf 1 R
Kf -1.746 -Inf -0.001 2
v -0.001
Kq 0.8156 0.001 Inf 1

Update model variables

B Variable Detail

Click OK. A new variable DesignVars appears in the SDOTOOL Workspace.

Evaluate the Initial Design

Click Plot Current Response to simulate the model and check how well the initial
design satisfies the design requirements.

Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

RESPONSE OPTMEZATION HEd B LD

Design Variables Set: DesignVars ~ / EZA New = @ e — Lo r@. |> 8@
Options
. . Evaluate No data selected ¥ Add Plot Plot Current @ Optimize ~ Close
Uncertain Variables Set: None ~ & E Select paquirements. - Response - Tab
VARIABLES REQUIREMENTS PLOTS OFTIMIZATION CLOSE
Dara Srowser @ Timeplotl = | Bedeplotl = |[Bodeplot2 =
Search warkspace variables P Time plot 1 O x | Bodeplotl O x

w MATLAB Workspace

sdodircraft/Alpha Response sdodircraft/Pilct G Response
MName Value 0B- — T
1 o
=
g
2
<3
o o
= =
£
w Maodel Workspace (sdoAircraft) g _
T
Name Value E’
FH Beta 4264352 - &
- Gamma 00100 B =
H Ka 06770
EH Kt -1.7460 MY e e plot 2 o x
¥ Design Optimization Workspace
sdodircraftiPitch Rate Loop
Name Value _ a0 T
| DesignVers <4l para... g T
4 —
2 h
% 50 ST ey
- - = w
w Variable Preview 1]

-a0

Phase (deg)

~160
10° 10 1| Update block

The plots indicate that the current design does not satisfy the pilot G-force requirement
and the alpha step response overshoot requirement is violated.

Optimize the Design
Create a plot to display how the controller variables are modified during the

optimization. In the Add plot drop-down list, select DesignVars, which contains the
optimization design variables Ki, KF, Kq and Ka.

3-107

3 Response Optimization

RESPONSE OPTIMIZATION H & & & 2@
Design Variables Set: DesignVars v Z [New ~ @ Tete T E 83

Options

Evaluate [@] Design\ars > AddPlot Plot Current © imi lnse

Uncertain Variables Set: [2Z] None v . [Eselect Requirements (el 0 renomen oalinze CT o
VARIABLES REQUIREMENTS PLOTS OPTIMIZATION CLOSE

Data Browser

/ Timeplotl x| Bodeplotl x| Bodeplot2 x| Iterationplotl =
Search workspace variables Pl Time plot1 O X |Bodeplotl O x
w* MATLAB Workspace

sdoaircratt/Alphes Response sdodircraftPilot G Response
Name = Value 06r T : il
1 i)
=
o o
o
2
=S -50
"=
-100
w Model Workspace (sdoAircraft) = v
=
i
Mame =~ Value E’ ank
o1
[Beta 426.4352 -] =
5 Gamma 0.0100 = 02] & 180
Ka 06770 0 2 & Update block 107" 10” 10 10% Updste block
£l -1.7460 "/ [Bode plot 2 O X | lteration plot1 o x
w Design Optimization Workspace
sdosircraftPitch Rate Loop [Ty T iy]
MName = Value 50 T —+— Ka|!
| 5| DesignVars <dxl para... % 0 - e Kf
£ —E—Ki |1
S V
g - :
= -]
= 100 :
w Variable Preview]
o
T
B
> a0 B
]
i1
£ : : 4
=G0 s - 0 2 4 6 8 10
10 10 1| Update block lteration

Click Optimize.

3-108

Design Optimization to Meet Time- and Frequen

cy-Domain Requirements (GUI)

DESIGN OPTIMIZATION RESPONSE OPTIMIZATION FIGURE VW HadHlegld
Design Variables Set: DesignVars v 7 [New ~ @ Data to Flot: 83
. Options
Evaluate Designars * @ i

Uncertain Variables Set: . [Sekct peguirements 0 Mdv Piot mf OmT\ze cTnc;e

VARIABLES. REQUIREMENTS. FLOTS OPTIMIZATION CLOSE
LT L ® Time plotl | Bodeplotl x| Bodeplot2 = | Iteration plotl =
Search workspace variables Pl Time plot1 O X |Eodeplotl O x
w MATLAB Workspace

soolircratt/Alphs Response sdopircraftiPilot G Response

Name « Value 0-5;' B T

Magnitude (dB)

¥ Model Workspace (sdoAircraft)

g
=
Name = Value ‘g g
H Beta 4264352 - : E
1 Gamma 0.0100 = 5> T T N J = 8
Ka 0.6538 o 2 4 & | Update block
:H K -0.3636 % Bode plot 2 O X | lteratio
¥ Design Optimization Workspace
sdoAircraftPitch Rate Loop 2
MName « Value a0 T
DesignVars <4l para..

| = RegqValues <4l struct>

Magnitude (dB)

w Variable Preview

T Y P]
.] .n

10 10 1| Update block
n plot1 O x

Phase (deg)

1| Update block

[-

tteration

3-109

3 Response Optimization

3-110

Iteration | F-count | Alpha Response (.. | Pilot G Response ...

Pitch Rate Loop [...| Pitch Rate Loop (..

(==0) [==0) (==0) (==0)

0 9 0.1450 8.5841 -0.71610 03122

1 20 1.4060 -1.7578 -1.0067 0.0215

2 Ky 01081 -1.0047 -1.3244 -0.1505

3 41 0.2407 -0.0478 -1.2014 -0.0125

4 51 0.0057 0.0584 -1.1881 0.1180

3 61 2.2579e-04 0.0034 -1.1965 0.1432
COptimization started 01-Cct-2012 11:15:57 -
=

Optimization converged, 01-0ct-2012 11:16:39

Optimized variable values written to "DesignVars’ in the Design Optimization workspace e
[Save tteration...| |Display Options...| | Optimize |

To load a pre-configured file and run the optimization, click Open in the Design
Optimization tab and select sdoAircraft_sdosession.mat. Alternatively load the

project by typing:
>> load sdoAircraft_sdosession

>> sdotool(SDOSessionData)

The optimization progress window updates at each iteration and shows that the

optimization converged after 5 iterations.

The Alpha Response and Pilot G Response plots indicate that the design
requirements are satisfied. The DesignVars plot shows that the controller gains

converged to new values.

Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

To view the optimized design variable values, click DesignVars in the SDOTOOL

Workspace. The optimized values of the design variables are automatically updated in
the Simulink model.

% Close the model
bdclose("sdoAircraft®)

3-111

3 Response Optimization

Design Optimization to Meet a Custom Objective (GUI)

3-112

This example shows how to optimize a design to meet a custom objective using the
Design Optimization tool. You optimize the cylinder parameters to minimize the cylinder
geometry and satisfy design requirements.

Hydraulic Cylinder Model

The hydraulic cylinder model is based on the Simulink model sldemo_hydcyl. The
model includes:

* Pump and Cylinder Assembly subsystems. For more information on the

"»”

subsystems, see “"Single Hydraulic Cylinder Simulation"”’.

+ A step change applied to the cylinder control valve orifice area that causes the
cylinder piston position to change.

Hydraulic Cylinder Design Problem

You tune the cylinder cross-sectional area and piston spring constant to meet the
following design requirements:

* Ensure that the piston position has a step response rise time of less than 0.04 seconds
and setting time of less than 0.05 seconds.

* Limit the maximum cylinder pressures to 1.75e6 N/m.
* Minimize the cylinder cross-sectional area.
Open the Design Optimization Tool

Open the Design Optimization tool to configure and run design optimization problems
interactively.

sdotool ("sdoHydraulicCylinder™)

Design Optimization to Meet a Custom Objective (GUI)

Single Hydraulic Cylinder Simulation

gt

’—:b'lﬂs ults

control vahe
orifice area Cylinder Assembly

Copyright 1920-2011 The MathWaorks, Inc.

PeonPosiion

3-113

3 Response Optimization

3-114

Design Variables Set: &) None ~ [Select v

Dot o Pl B

ﬁ Mo data selected ¥ Add Plot Plot

Evaluate

€ Nane -

VARIABLES REQUIREMENTS

PLOTS OPTIMIZATION LOSE...

Search workspace variables P

w MATLAB Workspace

Narne « Value

w Model Workspace (sdoHydraulicCylinder)

Mame & Value
Ha 00100 -
HH Ac 1.0000e-03 [~
[Beta 700000000
Ha 20000e-08 z

¥ Design Optimization Workspace

Name = Value

w Variable Preview

Specify Design Variables
Specify the following model parameters as design variables for optimization:
+ Cylinder cross-sectional area Ac

+ Piston spring constant K

In the Design Variables Set drop-down list, select New. A dialog to select model
parameters for optimization opens.

Design Optimization to Meet a Custom Objective (GUI)

Create Design Variables set:

[Varisble [value | Minimum | Maximum | Scale —

Current value Used By
E e 001 5 i el

Bete [700000000

c1 [2e-008

c2 2e-009 5

[] Cd 61

K (50000 FdoHidrau\ichinderéthnd?

Qmax 005 doHydraulicCylinder/Pum
Update model variable values 30 [2.5e-005 —

hn il EdaHurranlicrulinder/Culindd ™

P Variable Detail P Specify expression (e.g., sx ora(3))

Select Ac and K. Click <- to add the selected parameters to the design variables set.

Limit the cylinder cross-sectional area to circular area with radius between 1 and 2
centimeters and the piston spring constant to a range of 1e4 to 10e4 N/m. To do so,
specify the maximum and minimum for the corresponding variable in the Maximum and
Minimum columns.

Because the variable values are different orders of magnitude, scale Ac by 1e-3 and K by
leb.

Press Enter after you specify the values.

X
i Dbl
| | LETEIE [value | winimum | Madmum | usc;u'f = Variable Current value Used By
- e 001 EdoHydraulicCylinder/Cylinde +
50000 10000 100000 100000 Beta 700000000
= l2e-008
& Be-009
cd 61 3
K 50000 doHydraulicCylinder/Cylind
Qmax 005 doHydraulicCylinder/Pum \\
ho il kdobhdranlicCulinder/Cadindd ™
> iz ¥ Specify expression (e.g., sx ora(3))

Click OK. A new variable DesignVars appears in the SDOTOOL Workspace.

Specify Design Requirements

3-115

3 Response Optimization

3-116

The design requirements require logged model signals. During optimization, the model is
simulated using the current value of the design variables and the logged signal is used to
evaluate the design requirements.

Log the cylinder pressures, which is the first output port of the Cylinder Assembly

block.

In the New drop-down list, select Signal. A dialog to select model signals to log opens.

O PTIMLZATION

Uncertain Variables Set: [%%] Mone v

RESPONSE OPTIMIZATION

Design Variables Set:) Designvars v 7

Z

[select

m
— Evaluate
e NEW ¥ peguirements

Data to Plot:

New Requirement

Data Browser """,

VARIABLES

—— Signal Bound

FUW| Use bo specify 3 piecewise

Search waorkspace variables

linear bound an & signal,

w MATLAB Workspace

Step Response Envelope

Name =

Value

’ Use to specify a step

response envelope on a signal,
—— Signal Tracking
PV Use ta specify a tracking

requirament on 2 signal.

Custom Requirement

w Model Workspace (sdoHydraulicCylinder)

custam requirement,

New Signal
signal

—E Specify Sirmulink Signals o log so
they can be used in design requirements,

New Requirement Using Model Blocks

Time Domain Check Blocks

MName « Value
A 0.0100
FH ac 1.0000e-03
[Beta 700000000
Ha 2.0000e-08
w Design Optimization Werkspace
Name = Value
© DesignVars <2x para..

’i Lise the Sirmulink Design Optirization library to
add time domain check blacks ta a Simulink madel,

w Variable Preview

ﬁ No data selected ¥~ Add Plot Plot

B

ﬁ Options

Optimize

= Current Response

PLOTS OPTIMIZATION CLOSE...|

Design Optimization to Meet a Custom Objective (GUI)

Signal set: @ |

Signal

No signals have currently been selected. *
Please go back to the model and dick on a
signal to selectit.

Remove Signal

| ok || Cancel |[Help |

Enter Pressures as the signal name in the Signal set field. Then, in the Simulink
model, click the first output port of the Cylinder Assembly block named Pressure.
The dialog updates to display the selected signal.

Select the signal in the dialog and click -> to add it to the signal set.

Signal set: |Pressures |

@ Currently selected signals | Signal
= doHydraulicCylinder/Cylinder Assemblyl (Pressures

Remove Signal

[ok || cancel |[Hep |

Click OK. A new variable Pressures appears in the SDOTOOL Workspace.

Similarly, log the piston position, which is the second output of the Cylinder Assembly
block, in a variable named PistonPosition.

3-117

3 Response Optimization

Signal set: |PistonPosition |

@ Currently selected signals | Signal
= doHydraulicCylinder/ Cylinder Assembly:2 (PistonPosition

Remove Signal

| ok || Cancel |[Help |

Specify the maximum cylinder pressure requirement of less than 1.75e6 N/m.

In the New drop-down list, select Signal Bound. A dialog to create a signal bound
requirement opens.

3-118

Design Optimization to Meet a Custom Objective (GUI)

RESPONSE OPTIMIZATION

Design Variables Set: a DesignVars = z E] Select v

Evaluate
Requirements
New Reqguirement

Dats o Pl B

ﬁ No data selected ~ Add Plot Plot

-

ﬁ Options

Uncertain Variables Set: Mone w Optimize

VARIABLES OPTIMIZATION

Darg Browser . Signal Bound

P P
Search waorkspace variables linear bound on a signal.

w MATLAB Workspace

Step Response Envelope

’ Use b specify a step

Name = Value response envelope on a signal,

—— Signal Tracking
I Use to specify a tracking

reruiverment o a sigral.

Custom Requirement
Use bo create 3
custom requiremnent.

w Model Workspace (sdoHydraulicCylinder)

Name = Value Mew Signal
==F 0.0100 signal
FH Ac 1.0000e-03 Specify Simulink Signals ta lag so
[Beta 700000000 they can be used in design requirements,
[== ew Kequiremen sing Mode| OCKS
Ha 2,0000e-08 New Requi t Using Model Block

Time Domain Check Blocks

¥ Design Optimization Werkspace
’i Lize the Simulink Design Optimization library to

Narme = Value add tima domain check blocks ke 3 Simulink madel.
D DesignVars <21 para..
&) PistonPosition <1xd Simul...

Pressures <1 Simul...

w Variable Preview

3-119

3 Response Optimization

Signal Bound

Use to specify a piecewise linear bound on a signal.

WET=ASignalBound

w Specify Signal Bound

Type: Constrain signal to be <= the bound -

Edge Start Edge End

Time () Amplitude Time (5] Amplitude Slope (1/5)

0 1 10 1 0

P Select Signals to Bound

[¥] Create Plot ’ OK H Cancel ” Help]

In the Amplitude columns, enter the maximum pressure requirement of 1.75e6 N/m
and Requirement Name as MaxPressure. In the Select Model Signals area, select
Pressures, the signal on which this requirement applies.

3-120

Design Optimization to Meet a Custom Objective (GUI)

Marne: |MaxPressurE |

Signal Bound

Use to specify a piecewise linear bound on a signal,

w Specify Signal Bound
Type: [Cunstrain signal to be <= the bound -]
Edge Start Edge End
Time (s) Amplitude Time (s) Amplitude Slope (1/5)
0 1750000 0,1000 1750000 0
¥ Select Signals to Bound

Signal

PistonPosition (sdoHydraulicCylinder/Cylinder Assembly:2)

Pressures (sdoHydraulicCylinder/Cylinder Assemblhy:1)

Create Plot

| ok || Cancel || Help |

Click OK.

A new MaxPressure variable appears in the SDOTOOL Workspace.

A graphical view of the maximum pressure requirement is automatically created.

3-121

3 Response Optimization

RESPOMSE OFTIMIZATION

Design Variables Set:) Designvars = 7 | [Select @ E‘L .‘ |> 83
Data to Plot: w @
Options
. . Evaluate B Mo data selected > Add Plot Plot Optimize Close
Uncertain Variables Set: None « Z [y Mew = Requirements - Current Response Tab
WVARIABLES REQUIREMENTS pLOTS OPTIMIZATION CLOSE..| &
Diata Browser w0 Timeplotl =
Search workspace variables p- ‘3.!.3" There is no dats for Pressures, use "FPlot Gurrent Response” or run the optimization to update the plot
w MATLAB Workspace .
%10 sodoHydraulicCylinder 'Cylinder &ssemily:1
Mame Value 1757
175

w Model Workspace (sdoHydraulicCylinder)

MName Value

A 00100 - :

HH Ac 1.0000e-03 = N

FH Beta 700000000 g

FH o 2.0000e-08 2 2 175
E |

¥ Design Optimization Workspace

Name Value

0 DesignVars =24l para... - =

@ MaxPressure <13 sdour... E|

e PistonPosition <11 Simul... B B
Pressure: 131 Siraul S

w Variable Preview

oo 0.02 003 0.04 0.0s 008 o.or 0.03 oog o
Time (zeconds)

1750
o

Specify the piston position step response requirement of rise time of less than 0.04
seconds and a settling time of less than 0.05 seconds.

In the New drop-down list of the Response Optimization tab, select Step Response
Envelope. A dialog to create a step response requirement opens.

Specify a requirement name PistonResponse, the required rise and settling time
bounds. Select PistonPosition as the signal to apply the step response requirement to.

3-122

Design Optimization to Meet a Custom Objective (GUI)

Step Response Envelope

Marne: | PistonResponse

Use to specify a step response envelope on a signal.

w Specify Step Response Characteristics
Initial value: | IZI-|

Step time: | IZI-| seconds
Rise time | EI-.I]~4EI-EI-| seconds
Settling time: | EI-.I]EEI-I}| seconds
% Overshoot: | 10.0000 |

* Select Signals to Bound

Final value: | IZI-.I]uiIZI-I]|
% Rise: | 80|
% Settling: | 1.0000 |
% Undershoot: | 1 |

Signal

PistonPosition (sdeHydraulicCylinder/Cylinder Assembly:2)

Pressures (sdeHydraulicCylinder/Cylinder Assembly:1)

HH

Create Plot

| ok || Cancel || Help |

Click OK.
Specify Custom Objective

The custom objective is to minimize the cylinder cross-sectional area.

3-123

3 Response Optimization

In the New drop-down list, select Custom Requirement. A dialog to create custom
requirement opens.

Create Requirement
Custom Requirement

Create a custom requirement. The optimizer evaluates the
specified function during optimization passing a structure with
fields containing the optimized design varnable values and logged
simulation results.

Name:

w Specify Function
Type: :':CI-FI strain function cutputto be <=0 «

Function: | @myCustomBequirement

| Error if constraint is viclated

b Select Signals and Systems to Bound (Optional)

(V| Create Plot | QK || Cancel || Help |

Specify a function to call during optimization in the Requirement function field. At
each optimization iteration, the software calls the function and passes the current design

3-124

Design Optimization to Meet a Custom Objective (GUI)

variable values. You can also optionally pass logged signals to the custom requirement.
Here, you use sdoHydraulicCylinder_customObjective as the custom requirement
function, which returns the value of the cylinder cross-sectional area.

In the Requirement type drop-down list, specify whether the requirement is an
objective to minimize (min), an inequality constraint (<=), or an equality constraint (==).

3-125

3 Response Optimization

Custom Requirement

Create a custom requirement. The optimizer evaluates the
specified function during optimization passing a structure with
fields containing the optimized design varnable values and logged
simulation results.

Mame: MinimizedC

¥ Specify Function

Type: Minirmize the function ocutput -

Function: | @sdoHydraulicCylinder_customObjective

Error if constraint is violated

b Select Signals and Systems to Bound (Optional)

/| Create Plot | Ok || Cancel || Help

type sdoHydraulicCylinder_customObjective

function objective = sdoHydraulicCylinder_customObjective(data)
%SDOHYDRAUL ICCYL INDER_CUSTOMOBJECTIVE

3-126

Design Optimization to Meet a Custom Objective (GUI)

%
%
%
%
%
%
%
%
%
%

%

The sdoHydraulicCylinder_customObjective function is used to define a
custom requirement that can be used in the graphical SDTOOL environment.

The |data] input argument is a structure with fields containing the
design variable values chosen by the optimizer.

The |Jobjective] return argument is the objective value to be minimized by
the SDOTOOL optimization solver.

Copyright 2011 The MathWorks, Inc.

%For the cylinder design problem we want to minimize the cylinder
%cross-sectional area so return the cylinder cross-sectional area as an
%objective value.

Ac

= data.DesignVars(l);

objective = Ac.Value;
end

Evaluate the Initial Design

Click Plot Current Response to simulate the model and check how well the initial
design satisfies the design requirements. To show both requirement plots at the same
time, use the plot layout widgets at the top-right of the tool.

3-127

3 Response Optimization

RESPOMSE OFTIMIZATION

SIG O i
Design Variables Set:) Designvars = 7 [select Data to Plot: LE_,L |> 83

Options
Evaluate &) Mo data selected ¥ Add Plot Plot @ Optimi cl

. . = ; ptimize ose
Uncertain Variables Set: None « Z [y Mew = Requirements - Current Response Tab

WVARIABLES REQUIREMENTS pLOTS OPTIMIZATION CLOSE..| &
Data Browser w0 Timeplotl x| Timeplot2 x| lteration plotl x
Search workspace variables P 7| Fime plotl o x
w MATLAB Workspace 5
x40 stoHydraulicCylinderiCyinder Assembly:1

Mame Value

£
2
w Model Workspace (sdoHydraulicCylinder) E
MName Value
(A 00100 - : : : :
HH Ac 1.0000e-03 P OO HUNNRUTU UOTUUUUNt SUTEOTUOUNL SOUSOTRURUN HUUTUSUOE JUEURORL FEUTUROROL AU
M Beta 700000000 il oo 002 003 004 00s 006 007 008 008 0
FH o 2.0000e-08 | e plot2 : e

¥ Design Optimization Workspace

Name Value
[} DesignVars =24l para... -
e MaxPressure <1xl sdour..
&) MinimizeAC <14 sdour..
PistanPositinn 131 Siraul S

w Variable Preview

Amplitude

From the plots, see that the maximum pressure requirement is satisfied but the piston
position step response requirement is not satisfied.

Optimize the Design

Create a plot to display how the cylinder cross-sectional area and piston spring constant
are modified during optimization.

In the Add plot drop-down list, select DesignVars, which contains the optimization
design variables Ac and K.

3-128

Design Optimization to Meet a Custom Objective (GUI)

RESPOMSE OFTIMIZATION

Design Variables Set:) Designvars = 7 £ select @ Data to Plot: E |> 83
. Options
. . Evaluate e DesignVars * Add Plot Plat C Optimize ~ Close
Uncertain Variables Set: Z Lo Mew = peguirements - e T e T
VARIABLES REQUIREMENTS PLOTS OPTIMIZATION CLOSE.. | a
LT w0 Timeplotl | Timeplot2 x| kerationplotl x| leration plot2 =
Search workspace variables P Time plot 1 O X || Time plot 2 O x
w MATLAB Workspace 5
« FEoHydraulicCylinderiCylinder Assembly:1 sdoHydraulicCylinderCylinder Azzembly:2
MName Value 5
w Model Workspace (sdoHydraulicCylinder)
MName Value
(A 00100 - : : : : :
[Ac 1.0000e-03 B 0t SO TORRSUURO USRURRUN FURRUURUIN SORURORR a0 1[N SO S UN SURRRUURU FUURRRUOUN IRPRRRRON
M Beta 700000000 0 ooz 004 00E 008 04 il ooz 004 006 008 01
[2.0000e-08 “) eration plot 1 O x |[Tteration plot 2 o x
¥ Design Optimization Workspace . run the optimization DesignVars
09
Name Value
[} DesignVars =24l para... - 08
e MaxPressure <1xl sdour.. [A r
&) MinimizeAC <1 sdour.. - =
PistanPasitinn 151 Siraul, - {2 07
=z &
w Variable Preview g
06
05T
o
lteration lteration

Click Optimize.

3-129

3 Response Optimization

VIEW QEI %ﬁﬁ 0 =

OPTIMIZA RESPONSE OPTIMIZATION

Design Variables Set: (@ Designvars v # [New = @ T T . 23
. Evaluate DesignVars ~ Add Piot Plot Current ons Optimize Close
Uncertain Variables Set: s @ Select Requirements - R - Tab
VARIABLES REQUIREMENTS PLOTS OPTIMIZATION CLOSE
Data Browser @ Timeplotl | Timeplot2 | herstionplotl | Iteration plot2 x
Search warkspace variables P | | Timeplotl O x | Timeplot2 O x
» MATLAB Workspace 5
w10 sdoHydraulicCylinder/Cylinder Assembly:1 sodoHydraulicCylinderCylinder Assembly.2
Name - Value I]
& b=
w Model Workspace (sdoHydraulicCylinder) 2 2
= =
Name = Value & &
A 00100 -
H Ac 3669704 B
HH Beta 700000000 ;
Ha 2.0000e-08 -]
w Design Optimization Workspace 0 002 004 008 008 041 0 002 004 008 008 04
Narme Value Iteration plot 2 O x
DesignVars =<2 para... -
EvalErrors <1 struct> o 08/
MaxPressure <1 sdour... o7
@] MinimizeAC <1 sdo.r, S :
¥ Variable Preview 06
£}
@ 057
I =
H
m 04
i1
@
03
0.2
o1
o 2 4 6 8 0
lteration lteration

3-130

Design Optimization to Meet a Custom Objective (GUI)

Iteration | F-count MinimizeAC MaxPressure Pistonresponse
(min) (==0) (==0)
0 3 1.0000e-03 -0.0480 0.3033
1 11 2.7281e-04 -0.0478 0.0725
2 17 3.8184e-04 -0.0478 -4 1874e-04
3 22 3.7360e-04 -0.0476 -4.5561e-04
4 27 3.7005e-04 -0.04786 -3.8585e-04
3 32 3.6697e-04 -0.0478 -2.7434e-04

Optimization started 27-Mar-2013 07:00:48

b

Optimization converged, 27-Mar-2013 07:00:54
The optimizer encountered 1 emors during the optimization. Details of the emors have been written to
"EvalEmors” in the Design Optimization worspace.

[Save tteration...| |Display Options...| | Optimize |

The optimization progress window updates at each iteration and shows that the
optimization converged after 5 iterations.

The Pressures and PistonPosition plots indicate that the design requirements
are satisfied. The DesignVars plot shows that the cylinder cross-sectional area Ac is
minimized.

To view the optimized design variable values, click the variable name in the SDOTOOL
Workspace. The optimized values of the design variables are automatically updated in

the Simulink model.

Related Examples

3-131

3 Response Optimization

To learn how to optimize the cylinder design using the sdo.optimize command, see
“'Design Optimization to Meet Custom Objective (Code)"™

% Close the model
delete(sdotool ("sdoHydraulicCylinder*))
bdclose("sdoHydraulicCylinder®)

3-132

Design Optimization to Meet a Custom Objective (Code)

Design Optimization to Meet a Custom Objective (Code)

This example shows how to optimize a design to meet custom objective using
sdo.optimize. You optimize the cylinder parameters to minimize the cylinder geometry
and satisfy design requirements.

Hydraulic Cylinder Model

Open the Simulink model.

sys = "sdoHydraulicCylinder"”;
open_system(sys);

Single Hydraulic Cylinder Simulation

p1

[

>

—

Pl PlotR esults

o,
-
¥

Pump

control vahe
orifice area

PeinPosition

Cylinder Assembly

Copyright 1920-2011 The MathWorks, Inc.
The hydraulic cylinder model is based on the Simulink model sldemo_hydcyl. The
model includes:

* Pump and Cylinder Assembly subsystems. For more information on the
subsystems, see “"Single Hydraulic Cylinder Simulation"”.

* A step change applied to the cylinder control valve orifice area that causes the
cylinder piston position to change.

Hydraulic Cylinder Design Problem

You tune the cylinder cross-sectional area and piston spring constant to meet the
following design requirements:

3-133

3 Response Optimization

3-134

+ Ensure that the piston position has a step response rise time of less than 0.04 seconds
and setting time of less than 0.05 seconds.

* Limit the maximum cylinder pressures to 1.75e6 N/m.

* Minimize the cylinder cross-sectional area.

Specify Design Variables

Select the following model parameters as design variables for optimization:
* Cylinder cross-sectional area Ac

* Piston spring constant K

sdo.getParameterFromModel (" sdoHydraulicCylinder®,“Ac");

Ac
K sdo.getParameterFromModel (" sdoHydraulicCylinder®,“"K");

Limit the cylinder cross-sectional area to a circular area with radius between 1 and 2
centimeters.

Ac._.Minimum
Ac.Maximum

pi*le-272; % m"2
pi*2e-272; % m"2

Limit the piston spring constant to a range of 1e4 to 10e4 N/m.

le4; % N/m
10e4; % N/m

K.Minimum =
K.Maximum =

Specify Design Requirements

The design requirements require logged model signals. During optimization, the model is
simulated using the current value of the design variables and the logged signal is used to
evaluate the design requirements.

Log the following signals:

* Cylinder pressures, available at the first output port of the Cylinder Assembly
block

Pressures = Simulink.SimulationData.SignallLogginginfo;
Pressures.BlockPath = "sdoHydraulicCylinder/Cylinder Assembly"®;
Pressures.OutputPortindex = 1;

* Piston position, available at the second output port of the Cylinder Assembly block

Design Optimization to Meet a Custom Objective (Code)

PistonPosition = Simulink.SimulationData.SignallLogginglnfo;
PistonPosition.BlockPath "sdoHydraulicCylinder/Cylinder Assembly”®;
PistonPosition.OutputPortindex 2;

Create an object to store the logging information and use later to simulate the model

simulator = sdo.SimulationTest("sdoHydraulicCylinder®);
simulator.LoggingInfo.Signals = [PistonPosition,Pressures];

Specify the piston position step response requirement of rise time of less than 0.04
seconds and settling time less than of 0.05 seconds.

PistonResponse = sdo.requirements.StepResponseEnvelope;

set(PistonResponse, ...
"RiseTime", 0.04, ...
"Finalvalue®, 0.04, ...

"SettlingTime", 0.05, ...
"PercentSettling”®, 1);

Specify the maximum cylinder pressure requirement of less than 1.75e6 N/m.

MaxPressure = sdo.requirements.SignalBound;

set(MaxPressure, ...
"BoundTimes"®, [0 0.1], --.
"BoundMagnitudes®, [1.75e6 1.75e6], --..
"Type”, "<=");

For convenience, collect the performance requirements into a single structure to use
later.

requirements = struct(...
"PistonResponse”, PistonResponse, ...
"MaxPressure”®, MaxPressure);

Create Objective/Constraint Function

To optimize the cylinder cross-sectional area and piston spring constant, create a
function to evaluate the cylinder design. This function is called at each optimization
iteration.

Here, use an anonymous function with one argument that calls the
sdoHydraulicCylinder_design function.

evalDesign = @(p) sdoHydraulicCylinder_design(p,simulator,requirements);

The function:

3-135

3 Response Optimization

3-136

+ Has one input argument that specifies the cylinder cross-sectional area and piston
spring constant values.

* Returns the optimization objective value and optimization constraint violation values.

The optimization solver minimizes the objective value and attempts to

keep the optimization constraint violation values negative. Type help
sdoExampleCostFunction for more details on how to write the objective/constraint
function.

The sdoHydraulicCylinder_design function uses the simulator
and requirements objects to evaluate the design. Type edit
sdoHydraulicCylinder_design to examine the function in more detail.

type sdoHydraulicCylinder_design

function design = sdoHydraulicCylinder_design(p,simulator,requirements)
%SDOHYDRAUL ICCYL INDER_DESIGN

%

% The sdoHydraulicCylinder_design function is used to evaluate a cylinder
% design.

%

% The |p] input argument is the vector of cylinder design parameters.

%

% The |simulator| input argument is a sdo.SimulinkTest object used to

% simulate the |sdoHydraulicCylinder| model and log simulation signals

%

% The |requirements| input argument contains the design requirements used
% to evaluate the cylinder design

%

% The |design| return argument contains information about the design

% evaluation that can be used by the |sdo.optimize| function to optimize
% the design.

%

% see also sdo.optimize, sdoExampleCostFunction

% Copyright 2011 The MathWorks, Inc.

%% Simulate the model

%

% Use the simulator input argument to simulate the model and log model
% signals.

%

Design Optimization to Meet a Custom Objective (Code)

% First ensure that we simulate the model with the parameter values chosen
% by the optimizer.

%

simulator_Parameters = p;

% Simulate the model and log signals.

%

simulator = sim(simulator);

% Get the simulation signal log, the simulation log name is defined by the
% model |SignallLoggingName| property

%

logName = get_param("sdoHydraulicCylinder®,"SignalLoggingName®);

simLog = get(simulator.LoggedData, logName) ;

%% Evaluate the design requirements

%

% Use the requirements input argument to evaluate the design requirements
%

% Check the PistonPosition signal against the stepresponse requirement

%

PistonPosition = get(simLog, "PistonPosition®);

cPiston = evalRequirement(requirements.PistonResponse,PistonPosition.Values);
% Check the Pressure signals against the maximum requirement

%

Pressures = find(simLog, "Pressures”);

cPressure = evalRequirement(requirements._MaxPressure,Pressures._Values);

% Use the PistonResponse and MaxPressure requirements as non-linear

% constraints for optimization.

design.Cleq = [cPiston(:);cPressure(:)];

% Add design objective to minimize the Cylinder cross-sectional area

Ac = p(D); %Since we called sdo.optimize(evalDesign, [Ac;K])
design.F = Ac.Value;
end

Evaluate the Initial Design

Call the objective function with the initial cylinder cross-sectional area and initial piston
spring constant.

initDesign = evalDesign([Ac;K]);

The function simulates the model and evaluates the design requirements. The scope
shows that the maximum pressure requirement is satisfied but the piston position step
response requirement is not satisfied.

initDesign is a structure with the following fields:

3-137

3 Response Optimization

3-138

+ Cleq shows that some of the inequality constraints are positive indicating they are
not satisfied by the initial design.

initDesign.Cleq

ans =

-0.3839
-0.1861
-0.1836
-1.0000
0.3033
0.2909
0.1671
0.2326
-0.0480
-0.0480

* F shows the optimization objective value (in this case the cylinder cross-sectional
area). The initial design cross-sectional area, as expected, has the same value as the
initial cross-sectional area parameter Ac.

1.0000e-03

Optimize the Design

Pass the objective function, initial cross-sectional area and piston spring constant values
to sdo.optimize.

[pOpt,optinfo] = sdo.optimize(evalDesign,[Ac;K]);

Optimization started 04-Sep-2014 11:34:36

max Step-size First-order
Iter F-count f(x) constraint optimality
0 5 0.001 0.3033

Design Optimization to Meet a Custom Objective (Code)

1 11 0.00057281 0.07293 0.48 85.4

2 17 0.000391755 0 0.128 28

3 22 0.000388463 0 0.00232 0.00409

4 27 0.000382784 0 0.00401 0.00231

5 32 0.000378554 0 0.00299 0.000545
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the selected value of the function tolerance,
and constraints are satisfied to within the selected value of the constraint tolerance

The optimization repeatedly evaluates the cylinder design by adjusting the cross-
sectional area and piston spring constant to meet the design requirements. From the
scope, see that the maximum pressure and piston response requirements are met.

The sdo.optimize function returns:

* pOpt shows the optimized cross-sectional area and piston spring constant values.

pOpt
popt(1,1) =
Name: "Ac*

Value: 3.7855e-04
Minimum: 3.1416e-04
Maximum: 0.0013

Free: 1
Scale: 0.0020
Info: [1x1 struct]
popt(2,1) =
Name: "K*

Value: 1.5816e+04
Minimum: 10000
Maximum: 100000

Free: 1
Scale: 65536
Info: [1x1 struct]

2x1 param.Continuous

3 Response Optimization

+ optlInfo is a structure that contains optimization termination information such as
number of optimization iterations and the optimized design.

optinfo

optinfo =

Cleq: [10x1 double]
F: 3.7855e-04
Gradients: [1x1 struct]
exitflag: 1
iterations: 5
SolverOutput: [1x1 struct]
Stats: [1x1 struct]

For example, the Cleq field shows the optimized non-linear inequality constraints are all
non-positive to with-in optimization tolerances, indicating that the maximum pressure
and piston response requirements are satisfied.

optinfo.Cleq

ans =

-0.0968
-0.0126
-0.0126
-1.0000
-0.2067
-0.0052
-0.0074
-0.0004
-0.0476
-0.0476

The F field contains the optimized cross-sectional area. The optimized cross-sectional
area value 1s nearly 50% less that the initial value.

optinfo.F

3-140

Design Optimization to Meet a Custom Objective (Code)

ans =

3.7855e-04

Update the Model Variable Values

By default, the model variables Ac and K are not updated at the end of optimization. Use
the setValuelnModel command to update the model variable values.

sdo.setValuelnModel (" sdoHydraulicCylinder®,pOpt)
Related Examples

To learn how to optimize the cylinder design using the Design Optimization tool, see
“'Design Optimization to Meet Custom Objective (GUI)".

% Close the model
bdclose("sdoHydraulicCylinder™)

3-141

3 Response Optimization

Design Optimization to Meet Custom Signal Requirements (GUI)

3-142

This example shows how to optimize a design to meet a custom signal requirement. You
optimize the controller parameters to minimize the plant actuation signal energy while
satisfying step response requirements.

1

Load a saved Design Optimization tool session.

load sldo_modell_custom signal_session
sdotool (SDOSessionData) ;

The following Simulink model opens.

'—’ FID p Int Outt

Contraller Flant

The Design Optimization tool, configured with the following settings, also opens:

Step response characteristics, specified on the output of the Plant block, that the
model output must satisfy:

* Maximum overshoot of 5%

+ Maximum rise time of 10 seconds

+ Maximum settling time of 30 seconds

Design variable set with the controller parameters Kp, Ki and Kd. These
parameters have a minimum value of 0.

The variables for step requirements (PlantResponse), logged signal
(PlantOutput) and design variables (DesignVars) which appear in the Design
Optimization Workspace.

Design Optimization to Meet Custom Signal Requirements (GUI)

4\ Design Optimization - sldo_modell - Time plot1

DESIGN OPTIMIZATION RESPONSE OPTIMIZATION FIGURE VIEW
Design Variables Set: DesignVars v 7 B New = E:@ Fee T T ;e '@ . 23
Evaluate |@| Mo data selected ~ Add Plot Plot Current ons imi
Uncertain Variables Set: . [selct pequiements €l o Rﬁp’;’:: BEE= ﬁ'ﬂ:f
VARIABLES RECUIREMENTS FLOTS OFTIMIZATION CLOSE
20 &
Data Browser ® Timeplotl =

pv

Search workspace variables

w MATLAB Workspace
sldo_model1 Plant: 1

Value
<1x sldod...

MName
5D0SessionData

w Model Workspace (sldo_modell)

Mame Value

1 kd 0 -

H K 0 E

HH kp 1 E

[..n n cnnn o =
E;

w Design Optimization Workspace

MName Value

] DesignVars <3xl para...

@] PlantOutput <1 Simul...
= PlantResponse <1xl sdour..

w Variable Preview

20 23
Time (seconds)

] 10 15

30 35

40

21 e O U Ut IS U T i
a 43

2 Specify a signal to log. You apply the custom requirement on this logged signal.

a Select New > Signal.

A window opens where you select a signal to log.

The window updates to display the selected signal.

Select the signal and click

to add it to the signal set.

In the Simulink model window, click the output of the Control ler block.

3-143

3 Response Optimization

3-144

d In Signal set, enter PlantActuator.

Click OK. A new variable PlantActuator appears in the Design
Optimization Workspace.

Specify the custom requirement to apply to the signal.

The custom requirement calls the objective function
sldo_modell _minimize_energy which returns the energy in the PlantActuator
signal. The signal energy is minimized. This function accepts:

* An input argument data which is a structure with fields for the design variables
in the Design Optimization Workspace. Signals are logged for the nominal
and uncertain parameter values if there are any.

* Returns the objective value to be minimized.

Tip To see the contents of this function, type edit
sldo_modell_minimize_energy .

a Select New > Custom Requirement.

A window opens where you specify the custom requirement.
b Specify MinimizeEnergy as the Requirement Name.
¢ Specify @sldo_modell minimize_energy as the Requirement function.

d Select min as the Requirement type.

Custom Requirement

Use to create a custemn requirement. The optimizer will call the specified function handle
during optimization passing a structure with fields containing
the current design variable values and the selected simulation signal values.

Requirement Mame: | MinimizeEnergy

Requirement function: | @sldo_medell_minimize_energy Open...

Requirement type:

Design Optimization to Meet Custom Signal Requirements (GUI)

4

In the Select Model Signals area, select the PlantActuator check box to
associate the custom requirement with that signal.

mm;}e: ---_""_'rh_____ / - _)/

Select Model Signals
[l Signal

i [f 0 do odell 0 O

[T |PlantOutput (sldo_model /Plant1)

Click OK. A new variable appears in the Design Optimization Workspace. The
window also updates to graphically display the custom signal requirement.

Click Optimize.

\> RESPOMSE QFTIMIZATION

k\/ @ Select EE. PlotCurrent Respanse
@ Optians o
(\ New v [AddPlot = [Ipt|m|§

T IZ ATION

After a few iterations, the optimization converges to meet both the custom signal and
step response requirements.

3-145

3 Response Optimization

3-146

n Optirmization Progress El@
Iteration | F-count MinirnizeEnergy PlantResponse
(min) (<=0
0 5 328.9084 201.4682
1 13 3.5137e+04 8.5712
pid P 2.4309e+04 1.8012
3 29 2.9021e+04 0.2618
4 37 5.1327e+04 0.1400
5 45 2.7805e+04 0.0071
[57 2.8281e+04 0.0083
7 65 2.7912e+04 0.0035
& 73 5.0345e+04 Z.44G3e-04
5 a2 4.3615e+04 -0.0099
10 Byl 3.1007e+04 -0.0065
11 113 3.0963e+04 -0.0054
Optimization started 04-Feb-2013 18:48:43 -
=
Optimization converged, 04-Feb-2013 18:459:04
Optimized variable values written to ‘DesignVVars’ in the Design Optimization workspace i
Save hteration...| |Display Options...| [Optimize

6 Close the model.

setOption(sdotool ("sldo_modell™), "NoPromptClose*”,true)

bdclose("sldo_modell™)

Design Optimization to Meet Frequency-Domain Requirements (GUI)

Design Optimization to Meet Frequency-Domain Requirements

(GUI)

This example shows how to tune model parameters to meet frequency-domain
requirements using the Design Optimization tool.

The example requires Simulink® Control Design™
Suspension Model
Open the Simulink Model.

open_system("sdoSimpleSuspension®)

Simple Suspension System

F
> > < 1 o 1 p[]
_ = el = pos
Band-Limited = u ded Ma Poafion
Disturbance Force spen ==
@
Damper
@
Spring
[b k1 >
Model
Parameters Spring/Damper
{from model workspace) Values

Copyright 2002-2011 The MathWorks, Inc.

Mass-spring-damper models represent simple suspension systems and for this example
we tune the system to meet typical suspension requirements. The model implements
the second order system representing a mass-spring-damper using Simulink blocks and
includes:

3-147

3 Response Optimization

* a Mass gain block parameterized by the total suspended mass, mO+mload. The total
mass is the sum of a nominal mass mO and a variable load mass mLoad.

+ a Damper gain block parameterized by the damping coefficient, b.
* a Spring gain block parameterized by the spring constant, k.
* two integrator blocks to compute the mass velocity and position.

* aBand-Limited Disturbance Force block applying a disturbance force to the
Mass. The disturbance force is assumed to be band-limited white noise.

Simulate the model to view the system response to the applied disturbance force.

3-148

Design Optimization to Meet Frequency-Domain Requirements (GUI)

2B ([Qek HER OEF >

. e

0.04

L
Y

" Ny lf1|| | Wlp

lfll |il"‘lll|IIH

L1
Y

-0.04

Time offset: 0

Design Problem

The initial system has a bandwidth that is too high. This can be seen from the
spiky position signal. You tune the spring and damper values to meet the following
requirements:

The -3dB system bandwidth must not exceed 10 rad/s.

3-149

3 Response Optimization

3-150

* The damping ratio of the system must be less than 1/sqrt(2). This ensures that no
frequencies in pass band are amplified by the system.

+ Minimize the expected failure rate of the system. The expected failure rate is
described by a Weibull distribution dependent on the mass, spring, and damper

values.

* These requirements must all be satisfied as the load mass ranges from 0 to 20.

Open the Design Optimization Tool

In the Simulink model Analysis menu, select Response Optimization.

Specify Design Variables

In the Design Variables Set list, select New. Add the b and k model variables to the

design variable set.

* Specify the Minimum and Maximum values for the b variable as 100 and 10000

respectively.

* Specify the Minimum and Maximum values for the k variable as 10000 and 100000

respectively.

Create Design Variables set: | DesignVars

Variable Value Mimmum|Maximum| Scale |

Variable

Current value

Used By

6283 100 10000 81az2

98696 10000 100000 131072

Update model variables

MoiseBW

1000

../Band-Limited Disturbance Ferce/Band-Limited White Noise

MoisePower

100000

.../Band-Limited Disturbance Force/Band-Limited White Noise

mi

100

sdoSimpleSuspension/Suspended Mass

mLoad

0

sdoSimpleSuspension/Suspended Mass

} Variable Detail

} Specify expression (e.g., s.x or a(3))

[oK ” Cancel ” Help]

Click OK. A new variable, DesignVars, appears in the Design Optimization

Workspace.

In the Uncertain Variables Set list, select New. Add the mLoad variable to the

uncertain variables set.

* Specify the Uncertain Values value for the mLoad variable as [10 15 20]

Design Optimization to Meet Frequency-Domain Requirements (GUI)

Create Uncertain Variables set: |UncVars

Variahle Nominal Value Uncertain Values Variable

Current value Used By

mload [1015 20] NoiseBW

1000

.../Band-Limited Disturbance Ferce/Band-Limited White Moise

NoiseP ower

100000

.../Band-Limited Disturbance Force/Band-Limited White Noise

b

=3
<&

6283

sdoSimpleSuspension/Damper
...impleSuspension/Model Pararneters (from model

k
Set Uncertain Values..,

Sampling method

98696

.../Band-Limited Disturbance Force/Band-Limited White Noise
...impleSuspension/Model Pararneters (from model

orkspace
sdoSimpleSuspension/Spring

mi

100

sdoSimpleSuspension/Suspended Mass

@ Min and Max combinations only (2 combinations)

(71 All combinations (3 combinations)

[oK ” Cancel ” Help]

Click OK. A new variable, UncVars, appears in the Design Optimization Workspace.

Specify Linear Analysis Input/Output Points

Specify the input/output points defining the linear system used to compute the

bandwidth and damping ratio.
To specify the input/output points:

* In the New list, select Linearization I/Os.

* In the Simulink model, click the signal at the output of the Band-Limited
Disturbance Force block. The Create linearization I/0 set dialog box is updated

and the chosen signal appears in it.

+ In the Create linearization I/O dialog box, select the signal and click Add.

* In the Configuration list for the selected signal, choose Input Perturbation to

specify it as an input signal.

3-151

3 Response Optimization

3-152

Filter by name

Lo~

@ Currently selected signals
e

Analysis 1/Os
Signal Description Configuration

+4_ Input Perturbation -

Highlight | [Refresh Signal Names | [Delete |

[ok |[cancel || Help |

+ Similarly, add the pos signal from the Simulink model. Specify this signal as an

output. In the Configuration list, select OQutput Measurement.

Filter by name

P

@ Currently selected signals
e

Analysis /0s

Active

Signal Description

Configuration

Port: 1
[Signal Name:

Port: 1

Block:...spensien/Band-Limited Disturbance Force

Block: sdoSimpleSuspension/x_dot

Signal Name: pos

+4_ Input Perturbation -

Output Measurement I3

Highlight | [Refresh Signal Names | [Delete |

[ok |[cancel |[Help |

* Click OK. A new variable, 10s, appears in the Design Optimization Workspace.

Design Optimization to Meet Frequency-Domain Requirements (GUI)

Add Bandwidth and Damping-Ratio Requirements

Tune the spring and damper values to satisfy bandwidth and damping ratio
requirements.

To specify the bandwidth requirement:

* Open a dialog to specify bounds on the Bode magnitude. In the New list, select Bode
Magnitude.

* Specify the requirement name as Bandwidth.
+ Specify the edge start frequency and magnitude as 10 rad/s and -3db, respectively.
+ Specify the edge end frequency and magnitude as 100 rad/s and -3db, respectively.

* Specify the input/output set to which the requirement applies by clicking Select
Systems to Bound. Select the 10s check box .

3-153

3 Response Optimization

3-154

Bode Magnitude

Specify a piecewise linear bound on the frequency response of a linear systern.

Marme: |Eandwidth |

w Specify Magnitude Bound
Type: [Cunstlain system to be <= the bound -]
Edge Start Edge End
Freq. (rad/s) Mag. (dB) Freq. (rad/s) Mag. (dE] Slope (dB/dec...
10.0000 -3 100 -3]
¥ Select Systems to Bound

Snapshot Times: |[U]

Linearization I/ 0
10s (sdoSimple5Suspension/Band-Limited Disturbance Forcel [in], sdoSim...

[/ Create Plot ’ 0K ” Cancel ” Help]

* Click OK. A new requirement, Bandwidth, appears in the Design Optimization
Workspace and a graphical view of the bandwidth requirement is automatically
created.

Design Optimization to Meet Frequency-Domain Requirements (GUI)

To specify the damping ratio requirement:

Open a dialog to specify bounds on the damping ratio. In the New list, select
Damping Ratio.

+ Specify the damping ratio bound value as 0.7071.

Specify the input/output set to which the requirement applies by clicking Select
Systems to Bound. Select the 10s check box .

Damping Ratio
Specify a bound on the damping ratio of the poles of a linear system.,

Mame: |Dampinqﬂatiu |

¥ Specify Bound

Damping ratio > | 0.7071 |

¥ Select Systems to Bound

Snapshot Times: |[I{]] |

Linearization /O
10s (sdoSimple5uspension/Band-Limited Disturbance Forcel [in], sdo5im...

[/ Create Plot ’ QK ” Cancel ” Help]

3-155

3 Response Optimization

3-156

+ Click OK. A new requirement, DampingRatio, appears in the Design Optimization
Workspace and a graphical view of the damping ratio requirement is automatically
created.

Add a Reliability Requirement

Tune the spring and damper values to minimize the expected failure rate over a lifetime
of 100e3 miles. The failure rate is computed using a Weibull distribution on the damping
ratio of the system. As the damping ratio increases the failure rate is expected to
increase.

Specify the reliability requirement as a custom requirement:

+ Open a dialog box to specify the custom requirements. In the New list, select Custom
Requirement.

+ Specify the custom requirement name as MinFai lureRate.

* In the Specify Function area, select Minimize the function output from the
Type list.

+ Specify the function as @sdoSuspension_FailureRate.

Design Optimization to Meet Frequency-Domain Requirements (GUI)

Create Requirement ...
Custom Requirement

Create a custom requirement. The optimizer evaluates the
specified function during optimization passing a structure with
fields containing the optimized design varnable values and logged
simulation results.

Mame: MinFailureRate

¥ Specify Function

Type: Minirmize the function ocutput -

Function: @idDSUipensiDn_FailurEHatel

Error if constraint is violated

b Select Signals and Systems to Bound (Optional)

/| Create Plot | Ok || Cancel || Help |

Click OK. A new requirement, MinFai lureRate, appears in the Design
Optimization Workspace and a graphical view of the custom requirement is
automatically created.

3-157

3 Response Optimization

3-158

The @sdoSuspension_FailureRate function returns expected failure rate for a lifetime of
100e3 miles.

type sdoSuspension_FailureRate

function pFailure = sdoSuspension_FailureRate(data)

%SDOSUSPEND ION_FAILURERATE

%

% The sdoSuspension_FailureRate function is used to define a custom

% requirement that can be used in the graphical SDTOOL environment.

%

% The |data] input argument is a structure with fields containing the

% design variable values chosen by the optimizer.

%

% The |pFailure|] return argument is the failure rate to be minimized by the
% SDOTOOL optimization solver. The failure rate is given by a Weibull

% distribution that is a function of the mass, spring and damper values.
% The design minimizes the failure rate for a 100e3 mile lifetime.

%

% Copyright 2012 The MathWorks, Inc.

%Get the spring and damper design values
allvarNames = {data.DesignVars.Name};

idx = strcmp(allVarNames, "k");
k = data.DesignVars(idx) .Value;
idx = strcmp(allVarNames, "b");
b = data.DesignVars(idx) .Value;

%Get the nominal mass from the model workspace
wksp = get_param("sdoSimpleSuspension®, "ModelWorkspace®);

m = evalin(wksp,"m0");

%The expected failure rate is defined by the Weibull cumulative
%distribution function, l-exp(-(xX/1)"k), where k=3, 1 is a function of the
%mass, spring and damper values, and x the lifetime.

d = b/2/sqrt(m*k);

pFailure = 1-exp(-(100e3*d/250e3)"3);
end

Optimize the Design

Design Optimization to Meet Frequency-Domain Requirements (GUI)

Before running the optimization be sure to have completed the earlier steps.
Alternatively, you can load the sdoSimpleSuspension_sdosession from the model
workspace into the Design Optimization tool.

To save the initial design variable values and later compare them with the optimized
values configure the optimization.

* Click Options.

+ Select the Save optimized variable values as new design variable set
option.

To study how the design variable values change during optimization:
* In the Data to Plot list, select DesignVars.
+ In the Add Plot list, and select Iteration Plot.

* View the design variables in an appropriately scaled manner. Right-click on the
DesignVars plot and select Show scaled values.

To evaluate the requirements at the initial design point, click Evaluate Requirements
. The requirement plots are updated and a ReqValues variable is added to the Design
Optimization Workspace.

3-159

3 Response Optimization

3-160

RESPONSE OPTIMIZATION

Design Variables Set: [@] Designvars v 7 [New = |=@

L

&3

w MATLAB Workspace

Name Value

~ Model Workspace (sdoSimpleSuspension)

Name Value
[-H NoiseBW 1000 -
{11 MoisePower 100000
Hib 6283

k 98606 2

¥ Design Optimization Workspace

Name Value
| Bandwidth <1d sdo....
©] DampingRatic <1d sdo.
| Designiars <2d para

& 10s <1x2 linear...
&) MinFailureRate <1xl sdo.r...
£| ReqValues <3 struct>
UncVars <14 slded...

¥ Variable Preview

rhi

ance Force:1 [in, seoSimpleSuspensionf_dot1 [out]

Maaritude (B}
s
&

=
2

o

=)
S

Phase (deg)

-180
o

10

Iteration plot 1

10 10° 10
Fracuiapcs fradicn

o

4| There is ne dats for MinFsilureRate, run the optimization o updste the

alue

teration

Scaled Value

Tteration plot 2

Data to Plot: @ st
= ons
5 Evaluate] DesignVars ~ | Add Plot Plot Optimize ~ Close
Uncertain Variables Set: 7] Uncvars ~ 7 [Select Reguirements - Current Response: v Tab
WARIABLES REQUIREMENTS PLOTS OPTIMIZATION CLOS.
*a Bodeplotl x| Pole/Zeromapl x| [Iterationplotl | lterationplot2 x
Search workspace variables P ~| [Bodeplot1 O x | [Pole/Zero map1 o

shance Force:t [in], sdoSimpleSuspensionsc_dot:1 [out]

Imaginary Axis rsecands™

0775

3

=
)
@
&

°
El

Hteration

To optimize the design, click Optimize. The plots are updated during optimization.
At the end of optimization, the optimal design values are written to the DesignVarsl
variable. The requirement values for the optimized design are written to the

RegValuesl variable.

Design Optimization to Meet Frequency-Domain Requirements (GUI)

DE!

0

RESPONSE OPTIMZATION HeLibliaaeld

Design Variables Set: DesignVars = 7 [iiNew = @ P D g@

5 Options.

Uncertain Variables Set: UncWars Z @ Select R;vu‘:‘:::ms YEINER AuclvPbm FR‘L(;:::: @ ! Opt'iruze C:;e

VARIABLES RECUIREMENTS PLOTS OPTIMIZATION CLOSE
Data Browser @ Bodeplotl x Pole/Zeromapl x| Iterationplotl x| Iterstionplot2 =
Search workspace wariables £ ~||Bodeplotl O X | Pole/Zero mapl O x
w MATLAB Workspace

ree [input], sdoZimpleZuspensiontz_dot 1 [output] ree finput], sdoSimpleSuspensions_dot: [output]
- T 8

MName Value

5
=
= —
% -50)
& 2
4 3
o
» Model Workspace (sdoSimpleSuspension) h &
-1o0]
Name Value o 4
i
[MoiseBW 1000 -l & =
HH NoisePower 100000 I ey oE?‘
Hb 14213e+03 i =
Hk 1.0000e+04 Ml
w Design Optimization Workspace <D = 5 7 3 3
10 10 10 10 10
Name Value B smpimts umalin’
@] Bandwidth <1 sdor.., Iteration plot1 - O X | Iteration plot2 x
DampingRatio <1 sdour... 253 SR
| DesignVars <2x1 para..
DesignVarsl <2x para... 03
105 <1x2 lingar...
\&| MinFailureRate <1 sdour... 025
IE| ReqValues <3xl struct>
|-E| ReqValuesl «3xl struct> e £}
UncVars <1x1 sldod... z =
2 o
> =
w Variable Preview 0.15]
W
0.1
0.05 |
0
lteration lteration

3-161

3 Response Optimization

3-162

Iteration | F-count

(rnin)

10
15
20
24
28
32
37

= h th & W k= o

MinFailureRate

0.0620
0.3293
01807
0.08M1
0.0353
0.0259
00227
00227

Bandwidth

(<=0)

07228
-0.6306
-0.0358

0.0258
-0.4508
-0.1833
-0.m7a
-0.m7a

DampingRatio
(==0)

0.4072

0.4142

0.4142

0.4142

01812

0.0588

-3.1402e-16

0

Optimization started 28-Mar-2013 16:38:35

Optimization converged, 26-Mar-2013 18:41:02

Optimized variable values written to "DesignVars1® in the Design Optimization workspace

b

[Save tteration...| |Display Options...| | Optimize |

Analyze the Design

To compare design variables before and after optimization:

In the Data to Plot list, select DesignVars.

In the Add Plot list, select Spider Plot.

To add the optimized design variables to the same plot, select DesignVarsl in the
Design Optimization Workspace and drag it onto the Spider plot. Alternatively, in
the Data to Plot list, select DesignVarsl. Then, in the Add Plot list, select Spider
plot 1 from the Add to Existing Plot section.

Design Optimization to Meet Frequency-Domain Requirements (GUI)

RESPONSE OPTIMIZATION

Design Variables Set: | Designvars v 7 [LiNew ¥ e Datato Plot: @ l> 83

Evaluate] pesignvars | addpiot Plot Q2 Options

Uncertain Variables Set: 7] Uncvars ~ 7 Select Requirements Optimize Close

~ CurrentResponse Tab
WARIABLES REQUIREMENTS PLOTS OPTIMIZATION CLOS... =
Eoodiis L] Bodeplotl | Pole/Zeromapl | lterationplotl % | Iterationplot2 % | Optimization Progress % | Spider plot1 x
Search workspace variables P~

w MATLAB Workspace

DesignVars, DesignVars1
Mame Value

signVars
—=— DesignVars1

v Model Workspace (sdoSimpleSuspension) P

Narme Value
{1 NoiseBW 1000 -
{11 NoisePower 100000
b 1.5492e+03
k 10000 S

v Design Optimization Workspace

Name Value

@] Bandwidth <1d sdour...
@] DampingRatio <1d sdour...
] DesignVars <2d parz... .
<] DesignVarst <2d para... - -
] 105 <12 linear..

] MinFailureRate <1d sdour...
IE] ReqValues <3l struct>
| E| ReqValuesl <3 struct>
|©] UncVars <1d sldod..

w Variable Preview

DesignVarsl(l,1} =

Name: 'b' TesD4

Value: 1.5492e+03
Minimam: 100
Maximum: 10000

Free: 1

Scale: 8192

Info: [1xl struct]

n

DesignVarsl(2,1) =

The plot shows that the optimizer reduced both the k and b values for the optimal design.

To compare requirements before and after optimization:
* In the Data to Plot list, select ReqValues.
* In the Add Plot list, select Spider Plot.

* To add the optimized requirement values to the same plot, select ReqValuesl in the
Design Optimization Workspace and drag it onto the Spider plot. Alternatively, in
the Data to Plot list, select ReqValuesl. Then, in the Add Plot list, select Spider
plot 2 from the Add to Existing Plot section.

3-163

3 Response Optimization

RESPONSE OPTIMIZATION

Design Variables Set: | Designvars v 7 [LiNew ¥) e @ E D 83
= ’ Options
- Evaluate & ReqValues ~ @ i
Uneertain Variables Set: [27] Uncvars » | 7 Select Requirements & e Add et cU,,mP:;,pme Ortinize C;:‘:
WARIABLES REQUIREMENTS PLOTS OFTIMIZATION CLOS.. =
Data Brawss =] Bodeplotl x| Pole/Zersmapl % | lterationplot1 x| Iterationplot2 x| Optimization Progress | Spiderplotl x | Spiderplot2 x
p P P P P 9 pider pl pider p
Search workspace variables o~

w MATLAB Workspace

ReqValues, ReqValues1
Mame Value

eqValues
—=— ReqValues1

v Model Workspace (sdoSimpleSuspension)

v Design Optimization Workspace

IE] ReqValues
ReqValuesl
|©] UncVars

<3l struct>
<3l struct>
<1 sldod...

w Variable Preview

ReqValuesl =

Name
Value

3xl struct array with fields:

Name Value

{H NoiseBw 1000 - b oms 5

{11 NoisePower 100000

H b 1.5402e-03 0828
k 10000 2

Name Value

@] Bandwidth <1d sdour...

@] DampingRatio <1d sdour...

] DesignVars <2d parz... -
@] DesigniVarsl <2d para... e .

2] 10s <12 linear..

] MinFailureRate <1d sdour...

3-164

The plot shows that the optimal design has a lower failure rate (the MinFailureRate axis)
and better satisfies the bandwidth requirement. The value plotted on the bandwidth

axis is the difference between the bandwidth bound and the bandwidth value. The
optimization satisfies the bound by keeping this value negative; a more negative value
indicates better satisfaction of the bound.

The improved reliability and bandwidth are achieved by pushing the damping ratio
closer to the damping ratio bound. The plot has two axes for the damping ratio
requirement, one for each system pole, and the plotted values are the difference between
the damping ratio bound and the damping ratio value. The optimization satisfies the
bound by keeping this value negative.

Design Optimization to Meet Frequency-Domain Requirements (GUI)

Finally the simulated mass position is smoother than the initial position response
(indication of a lower bandwidth as required) at the expense of larger position deflection.

=2 5([Q)a ka
0.15

0.1

.05

Time offset: 0

% Close the model
bdclose("sdoSimpleSuspension®)

3-165

3 Response Optimization

Specify Custom Signal Objective with Uncertain Variable (GUI)

This example shows how to specify a custom objective function for a model signal.
You calculate the objective function value using a variable that models parameter
uncertainty.

Competitive Population Dynamics Model
The Simulink model sdoPopulation models a simple two-organism ecology using the

competitive Lotka-Volterra equations:

P _ pop - Blt—n)+ah(t-n)
|".H E'L

)

r{;’-_: — RoPy(1 — Pa(t — 72) -;{”H[f —T1) }
Fi is the population size of the n-th organism.

I, is the inherent per capita growth rate of each organism.

* Tuis the competitive delay for each organism.

+ I is the carrying capacity of the organism environment.

* v 1s the proximity of the two populations and how strongly they affect each other.
The model uses normalized units.

Open the model.

open_system("sdoPopulation®)

3-166

Specify Custom Signal Objective with Uncertain Variable (GUI)

vy

Populaticn

Phase Portrait

alpha

Copyright 2012-20132 The MathWoerds, Inc

3-167

3 Response Optimization

Fopulatian 1

Specify Custom Signal Objective with Uncertain Variable (GUI)

XY Plot

0.8 .

0.6 -

¥ Axis

0.4 -

0.2 -

[] 1 1
0 0.5 1 1.5

X Axis

The two-dimensional signal, P, models the population sizes for P1 (first element) and P2
(second element). The model is initially configured with one organism, P1, dominating
the ecology. The Population scope shows the P1 population oscillating between high
and low values, while P2 is constant at 0.1. The Population Phase Portrait block
shows the population sizes of the two organisms in relation to each other.

Population Stabilization Design Problem

Tune the 2, 72, and a values to meet the following design requirements:
* Minimize the population range, that is, the maximum difference between P1 and P2.

Stabilize P1 and P2, that is, ensure that neither organism population dies off or grows
extremely large.

3-169

3 Response Optimization

You must tune the parameters for different values of the carrying capacity, . This
ensures robustness to environment carrying-capacity uncertainty.

Open Design Optimization Tool

Double-click the Open Optimization Tool block in the model to open a pre configured
Design Optimization tool session. The session specifies the following variables:

DesignVars - Design variables set for the I3, 72 and e model parameters.

K_unc - Uncertain parameter modeling the carrying capacity of the organism
environment (J{). K_unc specifies the nominal value and two sample values.

* P1 and P2 - Logged signals representing the populations of the two organisms.

Specify Custom Signal Objective Function

Specify a custom requirement to minimize the maximum difference between the two
population sizes. Apply this requirement to the P1 and P2 model signals.

1 Open the Create Requirement dialog box. In the New list, select Custom
Requirement.

2 Specify the following in the Create Requirement dialog box:

* Name - Enter PopulationRange.
* Type - Select Minimize the function output from the list.

* Function - Enter @sdoPopulation_PopRange. For more information about this
function, see Custom Signal Objective Function Details.

+ Select Signals and Systems to Bound (Optional) - Select the P1 and P2 check
boxes.

3-170

Specify Custom Signal Objective with Uncertain Variable (GUI)

Custom Requirement

Create a custom requirement. The optimizer evaluates the specified function during
optimization passing a structure with fields containing the cptimized design variable values
and logged simulation results,

Mame: |PopulationHanqe

w Specify Function

Type: [Minimize the function output -]

Function: | @sdoPopulation_PopRange [= l

[| Error if constraint is violated

w Select Signals and Systems to Bound (Optional)

Signal

P1 (sdoPopulation/Demuxl)

P2 (sdoPopulation/Demux:2)

Snapshot Times: |[ﬂ]

I Linearization I/ Q

Create Linearization [/Os defining a systemn so that it can be used in requirements,

L2]

(/] Create Plot ’ OK ” Cancel ” Help]

3 Response Optimization

3-172

3. Click OK.
A new variable, PopulationRange, appears in the Design Optimization Workspace.
Custom Signal Objective Function Details

PopulationRange uses the sdoPopulation_PopRange function. This function
computes the maximum difference between the populations, across different environment
carrying capacity values. By minimizing this value, you can achieve both design goals.
The function is called by the optimizer at each iteration step.

To view the function, type edit sdoPopulation_PopRange. The following discusses
details of this function.

Input/Output

The function accepts data, a structure with the following fields:

* DesignVars - Current iteration values of Ity. 72 and a.

* Nominal - Logged signal data, obtained by simulating the model using parameter
values specified by data.DesignVars and nominal values for all other parameters.
The Nominal field is itself a structure with fields for each logged signal. The field
names are the logged signal names. The custom requirement uses the logged signals,
P1 and P2. Therefore, data.Nominal .P1 and data.Nominal .P2 are timeseries
objects corresponding to P1 and P2.

* Uncertain - Logged signal data, obtained by simulating the model using the
sample values of the uncertain variable K_unc. The Uncertain field is a vector of N
structures, where N is the number of sample values specified for K_unc. Each element
of this vector is similar to data.Nominal and contains simulation results obtained
from a corresponding sample value specified for K_unc.

The function returns the maximum difference between the population sizes across
different carrying capacities. The following code snippet in the function performs this
action:

val = max(maxP(1)-minP(2),maxP(2)-minP(1));
Data Time Range

When computing the design goals, discard the initial population growth data to eliminate
biases from the initial-condition. The following code snippet in the function performs this
action:

Specify Custom Signal Objective with Uncertain Variable (GUI)

%Get the population data

tMin = 5; %lgnore signal values prior to this time

iTime = data.Nominal.P1.Time > tMin;

sigDhata = [data-Nominal _Pl._Data(iTime), data.Nominal _.P2_Data(iTime)];

iTime represents the time interval of interest, and the columns of sigData contain P1
and P2 data for this interval.

Optimization for Different Values of Carrying Capacity

The function includes the effects of varying the carrying capacity by iterating through the
elements of data.Uncertain. The following code snippet in the function performs this
action:

for ct=1:numel(data.Uncertain)
iTime = data.Uncertain(ct).P1.Time > tMin;
sigbata = [data.Uncertain(ct).Pl._Data(iTime), data.Uncertain(ct).P2_.Data(iTime)];

maxP
minP
end

max([maxP; max(sigData)]); %Update maximum if new signals are bigger
min([minP; min(sigData)]); %Update minimum if new signals are smaller

The maximum and minimal populations are obtained across all the simulations
contained in data.Uncertain.

Optimize Design
Click Optimize.

The optimization converges after a number of iterations.

3-173

3 Response Optimization

3-174

Iteration | F-count PopulationRange
(rnin)
0 i 1.5024
1 13 1.3350
2 20 0.5918
3 29 0.4514
4 36 0.4443
3 43 0.4361
L 51 0.4322
[>3 0.4316
& 65 0.4254
9 Ll 0.4254
10 &8 0.4254
Orptimization started 08-Cot-2012 12:01:35 -
=
Optimization converged, 09-0ct-2012 12:03:32
Optimized variable values written to "DesignVars’ in the Design Optimization workspace i
[Save teration...| |Display Options...| | Optimize |

The P1,P2 plot shows the population dynamics, with the first organism population
in blue and the second organism population in green. The dotted lines indicate the
population dynamics for different environment capacity values. The PopulationRange
plot shows that the maximum difference between the two organism populations reduces

over time.

Specify Custom Signal Objective with Uncertain Variable (GUI)

DESIGN OPTIMIZATION RESPONSE OPTIMIZATION FIGURE

Design Variables Set: IE DesignVars ~ / E Hew - % e E E
Evaluate Design\fars ¥ Add Plot Plot C it
Uncertain Variables Set: [77] Capacty + 7 [Select Requiraments (=l " R
VARIABLES | REQUIREMENTS | PLOTS

@ osto

OFTIMIZATION

| cLose |

Darta Browser
Search warkspace variables

w MATLAB Workspace

® Timeplotl = | Iteration plot 1 ><| Iteration plot2 = |

P 7| [Time plot1

Name « Value
@ 5D0SessionData <1l slded...

w Maodel Workspace (sdoPopulation)

Am plitude

lteration

Name = Value
HK 1 a
HH R 18641
HH alpha 04570
i teu 0.5000 | Mteration plot 2 m]
¥ Design Optimization Workspace
Name = Value
(@] Capacity <1 sldod... -
|@| DesignVars <3 para... El
@] P1 <1 Simul... »
@] p2 <1:d Simul... S i
w Variable Preview
0 : : : ; :
o 2 4 6 8 10

Iteration plot 1

alue

EFEESRE e

DesignVars

0 x

PO et

o |---

4 6
lteration

The Population Phase Portrait block shows the populations initially varying, but
they eventually converge to stable population sizes.

3-175

3 Response Optimization

3-176

XY Plot

0.8

0.6

Y Axis

0.4

0.2

0.5

X Axis

1.5

% Close the model
bdclose("sdoPopulation®)

Design Optimization with Uncertain Variables (Code)

Design Optimization with Uncertain Variables (Code)

This example shows how to optimize a design when there are uncertain variables. You
optimize the dimensions of a Continuously Stirred Tank Reactor (CSTR) to minimize
product concentration variation and production cost in case of varying, or uncertain, feed
stock.

Continuously Stirred Tank Reactor (CSTR) Model

Continuously Stirred Tank Reactors (CSTRs) are common in the process industry. The
Simulink model, sdoCSTR, models a jacketed diabatic (i.e., non-adiabatic) tank reactor
described in [1]. The CSTR is assumed to be perfectly mixed, with a single first-order
exothermic and irreversible reaction, A —+ . A, the reactant, is converted to 2, the
product.

In this example, you use the following two-state CSTR model, which uses basic
accounting and energy conservation principles:

dCy Fo, ; o

it A a_h{'ffw-' LCa)—r=*Cy
ar ~ F . H U
dft Ax ;rf Tteed = T) ”””r T h” Toat)
= .ﬂ'u % f |"-J|'

C'4, and C'feed . Concentrations of A in the CSTR and in the feed [kgmol/m* 3]

T, TJ’“'", and Tewol - CSTR, feed, and coolant temperatures [K]

* I and # - Volumetric flow rate [m~3/h] and the density of the material in the CSTR
[1/m~3]

* fiand A - Height [m] and heated cross-sectional area [m”2] of the CSTR.

ko - Pre-exponential non-thermal factor for reaction A —+ £ [1/h]

3-177

3 Response Optimization

* FE and H - Activation energy and heat of reaction for A —+ I [kcal/kgmol]
* I - Boltzmann's gas constant [kcal/(kgmol * K)]

* Tpand 7 - Heat capacity [kcal/K] and heat transfer coefficients [kcal/(m”2 * K * h)]

Open the Simulink model.

open_system("sdoCSTR");

FeedCond CA
Initia| C enditions "

Reacior Temperstre

i

FeedTempld Ti
| Reactor Temp. CA W]
Concentrationd Conc. Setpoint Coolant Temp. | T
| Rezidual Conc. Residual Concentration
Controller CSTR

—1

Coolant

Copyright 2012 The MathWorks, Inc.

The model includes a cascaded PID controller in the Controller subsystem. The
controller regulates the reactor temperature, T, and reactor residual concentration, C'A.

CSTR Design Problem

Assume that the CSTR is cylindrical, with the coolant applied to the base of the cylinder.
Tune the CSTR cross-sectional area, A, and CSTR height, i, to meet the following design
goals:

* Minimize the variation in residual concentration, C'4. Variations in the residual
concentration negatively affect the quality of the CSTR product. Minimizing the
variations also improves CSTR profit.

3-178

Design Optimization with Uncertain Variables (Code)

Minimize the mean coolant temperature Teoot. Heating or cooling the jacket coolant
temperature is expensive. Minimizing the mean coolant temperature improves CSTR
profit.

The design must allow for variations in the quality of supply feed concentration, Crec i,

and feed temperature, Treed The CSTR is fed with feed from different suppliers. The
quality of the feed differs from supplier to supplier and also varies within each supply

batch.

Specify Design Variables

Select the following model parameters as design variables for optimization:

* Cylinder cross-sectional area A

* Cylinder height Fi

p = sdo.getParameterFromModel ("sdoCSTR",{"A","h"});

Limit the cross-sectional area to a range of [1 2] m”2.

p(1) -Minimum
p(1) -Maximum

1;
2;

Limit the height to a range of [1 3] m.

p(2) -Minimum
p(2) -Maximum

1;
3;

Specify Uncertain Variables

Select the feed concentration and feed temperature as uncertain variables. You evaluate
the design using different values of feed temperature and concentration.

punc =

sdo.getParameterFromModel (*sdoCSTR" ,{"FeedCon0", "FeedTemp0*});

Create a parameter space for the uncertain variables. Use normal distributions for both
variables. Specify the mean as the current parameter value. Specify a variance of 5% of
the mean for the feed concentration and 1% of the mean for the temperature.

uSpace
uSpace
uSpace

sdo.ParameterSpace(punc);
setDistribution(uSpace, "FeedCon0* ,makedist(“normal* ,pUnc(1) .Value,0.05*pUnc(1]
setDistribution(uSpace, "FeedTemp0*® ,makedist("normal " ,pUnc(2) .Value,0.01*pUnc(:

3-179

3 Response Optimization

The feed concentration is inversely correlated with the feed temperature. Add this
information to the parameter space.

%uSpace.RankCorrelation = [1 -0.6; -0.6 1];

The rank correlation matrix has a row and column for each parameter with the (i,)) entry
specifying the correlation between the i and j parameters.

Sample the parameter space. The scatter plot shows the correlation between
concentration and temperature.

rng("default™); %For reproducibility
uSmpl = sdo.sample(uSpace,60);
sdo.scatterPlot(uSmpl)

. !1.5"-
-f ko-"..
- “- "

FeedCon0
=

Ll Led
[[
== tn
"
L]
L]
L]

FeedTemplO
[
&
%
»
.e
o

8 9 10 1 12 285 290 295 300 305
FeedCon0 FeedTempl

3-180

Design Optimization with Uncertain Variables (Code)

Ideally you want to evaluate the design for every combination of points in the design and
uncertain spaces, which implies 30%60 = 1800 simulations. Each simulation takes around
0.5 sec. You can use parallel computing to speed up the evaluation. For this example

you instead only use the samples that have maximum & minimum concentration and
temperature values, reducing the evaluation time to around 1 min.

[~,iminC] = min(uSmpl.FeedCon0);
[~,imaxC] = max(uSmpl.FeedCon0);
[~,iminT] = min(uSmpl .FeedTempO);
[~,imaxT] = max(uSmpl.FeedTempO);

uSmpl = uSmpl(unique([iminC, imaxC, iminT, imaxT]) ,:);
Specify Design Requirements

The design requirements require logging model signals. During optimization, the model
1s simulated using the current value of the design variables. Logged signals are used to
evaluate the design requirements.

Log the following signals:

* CSTR concentration, available at the second output port of the sdoCSTR/CSTR block

Conc = Simulink.SimulationData.SignalLogginglinfo;
Conc.BlockPath "sdoCSTR/CSTR™;
Conc.OutputPortindex 2;
Conc.LoggingInfo.NameMode 1;
Conc.LoggingInfo.LoggingName "Concentration”;

+ Coolant temperature, available at the first output of the sdoCSTR/Controller block

Coolant = Simulink.SimulationData.SignalLogginglnfo;
Coolant.BlockPath "sdoCSTR/Controller®;
Coolant.OutputPortindex 1;
Coolant.Logginglnfo.NameMode 1;
Coolant.Logginglnfo.LoggingName "Coolant”;

Create and configure a simulation test object to log the required signals.

simulator = sdo.SimulationTest("sdoCSTR");
simulator.Logginglnfo.Signals = [Conc,Coolant];

Create Objective/Constraint Function

Create a function to evaluate the CSTR design. This function is called at each
optimization iteration.

3-181

3 Response Optimization

3-182

Use an anonymous function with one argument that calls the sdoCSTR_design function.
evalDesign = @(p) sdoCSTR_design(p,simulator,pUnc,uSmpl);

The evalDesign function:

+ Has one input argument that specifies the CSTR dimensions

* Returns the optimization objective value

The sdoCSTR_design function uses a for loop that iterates through the sample values
specified for the feed concentration. Within the loop, the function:

+ Simulates the model using the current iterate, feed concentration, and feed
temperature values

+ Calculates the residual concentration variation and coolant temperature costs
To view the objective function, type edit sdoCSTR_design.

Evaluate Initial Design

Call the evalDesign function with the initial CSTR dimensions.

dinit

evalDesign(p)

dinit =

F: 11.3358
costConc: 6.4387
costCoolant: 4.8971

Plot the model response for the initial design. Simulate the model using the sample feed
concentration values. The plot shows the variation in the residual concentration and
coolant temperature.

sdoCSTR_plotModelResponse(p,simulator,puUnc,uSmpl);

Design Optimization with Uncertain Variables (Code)

Residual Concentration

FeedConl=11.8,

FeedTempl=281.9
FeedConl=9.6,

FeedTempl=302.6
FeedConl=8.5,
FeedTemp0=283.0
FeedCon0=0.6,
FeedTempl=288.7

kg molim?

0 10 20 30 40 a0 60
Time (h)

FeedConl=11.8,
FeedTemp0=241.9
FeedCon0=0.6,

FeedTempl=302 6
FeedConl=8.5,

FeedTemp0=283.0
FeedCon0=0.6,

FeedTempl=288.7

o 10 20 30 40 50 60
Time (h)
The sdoCSTR_plotMode IResponse function plots the model response. To view this
function, type edit sdoCSTR_plotModelResponse.
Optimize Design
Pass the objective function and initial CSTR dimensions to sdo.optimize.

pOpt = sdo.optimize(evalDesign,p)
Optimization started 04-Sep-2014 11:35:16

max Step-size First-order
Iter F-count) constraint optimality

3-183

3 Response Optimization

0 4 5.17935 0

1 8 3.81245 0 2.01 7.81
2 12 2.65827 0 0.574 3.06
3 16 2.53697 0 0.162 0.423
4 20 2.52022 0 0.0154 0.249
5 24 2.48533 0 0.072 0.163
6 28 2.47909 0 0.0285 0.107
7 37 2.47708 0 0.0019 0.143
8 42 2.46892 0 0.0477 0.452
9 50 2.46495 0 0.00891 0.397
10 65 2.46444 0 0.00127 0.351
11 72 2.46444 0 0.000801 0.351

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the selected value of the step size tolerance and constraints are
satisfied to within the selected value of the constraint tolerance.

3-184

popt(1,1) =
Name: "A*
Value: 2
Minimum: 1
Maximum: 2
Free: 1
Scale: 0.5000
Info: [1x1 struct]
popt(2,1) =
Name: "h*
Value: 2.2093
Minimum: 1
Maximum: 3
Free: 1
Scale: 2
Info: [1x1 struct]

2x1 param.Continuous

Evaluate Optimized Design

Design Optimization with Uncertain Variables (Code)

Call the evalDesign function with the optimized CSTR dimensions.

dFinal = evalDesign(pOpt)

dFinal
F: 2.4644

costConc: 1.4454
costCoolant: 1.0191

Plot the model response for the optimized design. Simulate the model using the sample
feed concentration values. The optimized design reduces the residual concentration
variation and average coolant temperature for different feed stocks.

sdoCSTR_plotModelResponse(pOpt,simulator,pUnc,uSmpl);

3-185

3 Response Optimization

Residual Concentration

22 FeedCon0=11.8,
21 FeedTempl=281.9
™= FeedConl=9.6,
£ FeedTemp0=302.6
E 2 FeedConl=8.5,
o FeedTemp0=283.0
= 49 FeedCon0=0.8,
FeedTempl=288.7
1.8

0 10 20 30 40 50 60
Time (h)
Coolant Temperature

400

FeedConl=11.8,
FeedTempl=281.9
FeedConl=9.6,

FeedTempl=302.6
FeedConl=8.5,
FeedTemp0=283.0
FeedCon0=0.6,
FeedTempl=288.7

Related Examples

To learn how to use sensitivity analysis to explore the CSTR design space and select
an initial design for optimization, see “'Design Optimization with Uncertain Variables

(Code)™.
References

[1] Bequette, B.W. Process Dynamics: Modeling, Analysis and Simulation. 1st ed. Upper
Saddle River, NJ: Prentice Hall, 1998.

% Close the model
bdclose("sdoCSTR™)

3-186

Generate MATLAB Code for Design Optimization Problems (GUI)

Generate MATLAB Code for Design Optimization Problems (GUI)

This example shows how to automatically generate a MATLAB function to solve a Design
Optimization problem. You use the Design Optimization tool to define an optimization
problem for a hydraulic cylinder design and generate MATLAB code to solve this
optimization problem.

Hydraulic Cylinder Design Problem

The “"Design Optimization to Meet Custom Objective Using the Design Optimization
Tool™ example shows how to use the Design Optimization tool to optimize a cylinder
design. In this example we load a pre-configured Design Optimization tool session based
on that example.

load sdoHydraulicCylinder_sdosession
sdotool (SDOSessionData)

Single Hydraulic Cylinder Simulation

pi

control vahe
orifice area

k-1
-
¥

PlotR esults

PT
p2
Fressures Ij: FIII

PeonPosiion

Cylinder Assembly

Copyright 1920-2011 The MathWaorks, Inc.

3-187

3 Response Optimization

4 Response Optimization - sdoHydraulicCylinder - Time plot 2

[RESPOMSE OPTIMIZATION

Design Variables Set: IE Designiars « / QNeW - @

E Open Session « Data to Plot: b @ ont
_ Evaluate Mo data selected ~ add Plot Plot Model one
% Save Session ¥ |ncertain Variables Set: s @ Select Requirements] - RESpDOH:E Opttmze
FILE AR 1ABLES REQUIRBJENTS PLOTS OPTIMIZATION
Data Browser ® | Timepletl | Timeplot2 |
Search wiorkspace variables P
MATLAE Waork:
hd LT sdaHydraulicCylinderCylinder Assembly. 2
Mame = Value L3
@ SD0SessionData 11 Sessia...
0.04 —
0.035
w Model Workspace (sdoHydraulicCylind... —
0.03
Mame = Walue
(H A 0.0100 - TES
HH Ac L0000e-03 B U
(1] Beta 700000000 g
HH o 20000e-08 7 g o
w Data <
0.015
Mame = Value
E DesignVars 26l Contin... - 0.01
| MaxPressure Lel Signal... [
@] MinimizeAC Ll Custom i 0.005
|| PistanPasitinn 11 Sinnal
w Variable Preview 0
<0.005
o 0.01 0.02 003 0.04 0.05 0.06 0.07 008
Time (seconds)

3-188

Generate MATLAB Code for Design Optimization Problems (GUI)

4 Response Optimization - sdoHydraulicCylinder - Time plot 2
[RESPOMSE OPTIMIZATICN
W O S o Design Variables Set: Designiars v 7 L Mewr @ e — | oo —
: _ . Evaluate Mo data selected > add Piot Plot Madel o Optitmize
% Save Session ¥ |ncertain Variables Set: Z @ Select Requirements - —— -
FILE AR 1ABLES REQUIRBJENTS PLOTS OPTIMIZATION
Data Browser ® | Time plot 1 | Time plot 2 |
Search wiorkspace variables P
MATLAE Waork:
hd LT sdaHydraulicCylinderCylinder Assembly. 2
Mame = Value L3
SD0SessionData 11 Sessia...
0.04 |- —
0.035 -
w Model Workspace (sdoHydraulicCylind... —
003
Mame = Walue
(H A 0.0100 - az|
H A L.0000e-03 B U
(1] Beta 700000000 g
Ha 20000e-08 g oo
w Data <
0.015
Mame = Value
(@] DesignVars 26l Contin... - 0.01 [~
MaxPressure Ll Signal... [
= inimizeAC Ll Custom i 0.005
1| PistanPaositinn 1x1 Sional
w Variable Preview ok
<0.005
o 0.01 0.02 003 0.04 0.05 0.06 0.07 008
Time (seconds)

Generate MATLAB Code

From the Optimize list, select Generate MATLAB Code.

3-189

3 Response Optimization

‘n Design Optimization - sdoHydraulicCylinder - Time plot 2

RESPOMNSE OPTIMIZATION

Uncertain Variables Set: Optimize | Close

b | Tab |
e IhdiZAT) Generate MATLAB Code
Data Browser » . RERS Generate a MATLAB function ta

solve the defined optimization problem.

Search workspace variables

vMEI in‘“ 1 =

1 Efunction [Cptimized DesignVars, Info] = =sdo sdoHydraulicCylinder (DesignVars) L
2 —|%5D0_SDOHYDRAULICCYLINDER B
3 %

4 % Solve a design optimization problem for the sdoHydraulicCylinder model. =
5 : 1
[% The function returns optimized parameter values, Optimized DesignVars,

7 % and optimization termination information, Info.

g %

k] % The, DesignVars, input argument defines the model parameters to optimize,

10 % if omitted the parameters specified in the function body are optimized.

11 %

12 % Modify the function to include or exclude new design requirements or

13 % change the optimization options.

14 %

15 % Auto-generated by SDOTOCL on 15-Mar-2012 13:14:45.

16 rE

17

18 %% Open the model.

19 open_system('sdoHydraulicC

20

21 %% Specify Design Variables

22 %

23 % Specify model parameters as design variables to optimize.

24 if mnargin < 1 || isempty(DesignVars)

25 DesignVars = sdo.getParameterFromModel ('sdo der',{"Rc',"K'});

28 DesignVars(l) .Minimum = 0.0003;

27 DesignVars(l) .Maximam = 0.0013;

28 DesignVars (1) .S5cale = 0.001; i

4 1 +

[Untitled29* x|

Examine the generated code. Significant code portions are:

3-190

Generate MATLAB Code for Design Optimization Problems (GUI)

+ Specify Design Variables - Definition of the model parameters being optimized.
+ Specify Design Requirements - Definition of the design requirements.

+ Create Optimization Objective Function - Creation of an anonymous
function that calls the subfunction sdoHydraulicCylinder_optFcn, which
evaluates the cylinder design. sdo.optimize calls the anonymous function at each
iteration.

+ Evaluate custom parameter requirement functions -
Evaluates the custom requirement, MinimizeAC, that uses the
sdoHydraulicCylinder_customObjective function.

+ Optimize the Design - Optimization using the sdo.optimize command.
Select Save from the MATLAB editor to save the generated function.

Run Generated Code

Run the generated function.

Command Window

'\’D Mew to MATLAB? Watch this Video, see Demos, or read Getting Started. X

>> [pOpt,optInfo] = =do_sdoHydraulicCylinder;

Cptimization started 14-Mar-2012 12:04:23

max Step-size First-order
Iter F-count fi=x) constraint optimality
1] 5 0.001 0.3033
1 10 0.000414827 3.401 4e+04 0.001
2 15 0.000506357 0.4482 6.T74e+03 0.00148
3 20 0.000537775 0.05098 4.36e+03 0.257
4 0.000511641 0.003752 10.1 0.0977
5 30 0.00050398%9 0.000875 335 0.001

Local minimum found that satisfies the constraints.

Cptimization completed because the objective function is non-decreasing in
feasible directions, to within the selected wvalue of the function tolerance,
and constraints are satisfied to within the selected value of the constraint tolerance.

£ > |

The first output argument, pOpt, contains the optimized parameter values and the
second output argument, optInfo, contains optimization information.

Modify the Generated Code

3-191

3 Response Optimization

You can:

* Modify the generated sdo_sdoHydraul icCylinder function to include or exclude
new design requirements or change the optimization options.

+ (Call the generated sdo_sdoHydraul icCylinder function with a different set of
parameters to optimize.

For details on how to write an objective/constraint function to use with the
sdo.optimize command, type help sdoExampleCostFunction at the MATLAB
command prompt.

Close the model

delete(sdotool ("sdoHydraulicCylinder®))
bdclose("sdoHydraulicCylinder®)

3-192

Skip Model Simulation Based on Parameter Constraint Violation (GUI)

Skip Model Simulation Based on Parameter Constraint Violation

(GUI)

This example shows how to optimize a design and specify parameter-only constraints
that prevent the model from being evaluated in an invalid solution space.

During optimization, the solver may try a design variable set that results in a model
simulation error, which can be computationally expensive. If you can define a parameter-
only constraint that identifies such a design variable set, then the solver can use the
constraint to skip such sets. In other words, you can configure the optimization to be
more efficient by disallowing design variable sets that lead to simulation errors.

In this example, you optimize thermostat settings to minimize temperature set-point
deviations while satisfying some constraints. One of the constraints applies to the model
parameters that define the thermostat switch on/switch off points. If the switch-off point
1s greater than the switch-on point, evaluating the model leads to a simulation error.

Thermostat Model
Open the model.

open_system("sdoThermostat”);

Thermostat Control

Temperature
Copyright 2012 The MathWorks, Inc External Temperature

Thermal
Capacity
- R - '.(: :] » 1
- +__J » _[]_ - - 1 > i)%é N l:l
k
Tempersture Ther mostat switch Heater e
Setpoint
Hester use Switch On Heater g

Detect Switch On

3-193

3 Response Optimization

3-194

The model describes a simple heater & thermostat that regulate the temperature of a
room. The room is subject to external temperature fluctuations. The room temperature is
computed using a first-order heat-flow equation:

dT KT —T) +
dt A) +Q
Where:

* T is the room temperature (C).

T. the external temperature (C).

* /) the heat supplied by the heater (W).

* K the room thermal capacity (J/C).

The heater is controlled by a thermostat that turns on when the difference between the
room temperature and temperature set-point exceeds a threshold. The heater turns off

when the error drops below a threshold.

The heater operation is displayed in the Heater use scope. The upper axis is the
delivered heat and the lower axis shows the times when the heater is switched on.

Skip Model Simulation Based on Parameter Constraint Violation (GUI)

2B Qsk NG Ea S -

Time offset: 0

3-195

3 Response Optimization

3-196

Thermostat Design Problem

You tune the thermostat turn-on and turn-off temperature thresholds, and also the
heater power. The Thermostat switch block specifies the turn-on and turn-off
thresholds using the variables H_on and H_off. The Heater block specifies the heater
power using the variable Hgain.

The design requirements are:

* Minimize the difference between the room temperature and temperature set-point
over a 24 hour period.

* The heater must not turn on more than 12 times during the 24 hour period.

* The thermostat turn-on temperature must be greater than the thermostat turn-
off temperature. If this constraint is violated, the model is invalid and cannot be
simulated or evaluated.

Open the Design Optimization Tool

Open a pre-configured Design Optimization tool session.

load sdoThermostat_sdosession
sdotool (SDOSessionData)

Skip Model Simulation Based on Parameter Constraint Violation (GUI)

4 Response Optimization - sdoThermostat - Iteration plot 3 @
[resronse opmazanion DELZES
E Open Session = Design Variables Set: IE Design'ars « / E Mewr = @ Data to Plot: ﬁ on
_ Evaluate (@] Desigrivars ~ addPiot it Madel ons Optimize
= = i i -
% AYE SBSSION ¥ ncertain Variables Set: 2 @Selsd Requirements - — -
FILE | AR 1ABLES | REQUIRBJENTS | PLOTS | OPTIMIZATION
Data Browser ® ‘ Iteration plot 1 32 | Tteration plot 2 2| Ireration plot 3
Search wiorkspace variables P .
DesignVars
w MATLAE Workspace 26
Mame = Value _'_: off
. —_—r on
@SDOSessmnData 11 Sessia... &— Hgain
1.5
w Model Workspace (sdoThermostat)
Mame = Walue
[H_off -0.5000 1+
HH H_on 05000 o
[Hgain 2 %
FHk 2.1000 2 >
w Data 0.54
Mame = Value
E DesignVars 3l Contin...
| H_on_sig Ll Signal
L= imitH_on Ll Signal.., ok
1| Minimize T error 1v1 Sianal S
w Variable Preview
-0.5 I I I I I I I I I |
0 1 2 & 4 5 6 7 8 9 10
lteration

3-197

3 Response Optimization

4 Response Optimization - sdoThermostat - Iteration plot 3 E @
=
[RESPOMSE OPTIMIZATICN s N
E Open Session = Design Variables Set: Design'ars « z E Mewr = @ Data to Plot: . ﬁ on
_ Evaluste Design'vars ~ Add Plot Plat Mocel g
5 = . . . ptimize
% AYE SBSSION ¥ ncertain Variables Set: 2 @Selsd Requirements - — -
FILE ‘ AR 1ABLES | REQUIRBJENTS | PLOTS | OPTIMIZATION _
Data Browser ® ‘ Iteration plot 1 32 | Tteration plot 2 2| Ireration plot3 ‘
Search wiorkspace variables P .
DesignVars
w MATLAE Workspace 26
Mame = Value _'_: off
. —_—r on
SDOSessmnData 11 Sessia... &— Hgain
1.5
w Model Workspace (sdoThermostat)
Mame = Walue
[H_off -0.5000 e 1+
HH H_on 0.5000 =l @
[Hgain 2 %
FHk 2.1000 2 >
w Data 0.54
Mame = Value
E DesignVars 3l Contin... =
| H_on_sig Ll Signal ‘a
L= imitH_on Ll Signal.., ok
1| Minimize T error 1v1 Sianal S
w Variable Preview
-0.5 I I I I I I I I I |
0 1 2 & 4 5 6 7 8 9 10
lteration

3-198

Skip Model Simulation Based on Parameter Constraint Violation (GUI)

4 Response Optimization - sdoThermostat - Iteration plot 3
[RESPOMSE OPTIMIZATICN
W O S o Design Variables Set: Designvars v 7 [l New v @ e — E —
_ Evaluste Design'vars ~ Add Plot Plat Mocel g
= ot i 4 . Rl - ptimize
% e SBSSION ¥ Uncertain Variables Set: Mone Z E Select Requirements - — -
FILE AR 1ABLES REQUIRBJENTS PLOTS OPTIMIZATION
Data Browser ® | Heration plot 1 | Tteration plot 2 | Tteration plot 3 |
Search wiorkspace variables R .
DesignVars
w MATLAE Workspace 26
Mame Value _'_: off
. & on
SDOSe::mnData 11 Sessia... &— Hgain
1.5
w Model Workspace (sdoThermostat)
Mame Walue
[H_off -0.5000 e 1+
H H_on 0.5000 =l @
[Hgain 2 %
FHk 2.1000 2 >
w Data 0.54
Mame Value
E DesignVars 3l Contin... =
|| H_on_sig Ll Signal El
& LimitH_an 1«1 Signal... b oF
& Minimize T erenr 1v1 Sianal S
w Variable Preview
-0.5 I I I I I I I I I |
0 1 2 & 4 5 6 7 8 9 10
lteration

The pre-configured session specifies the following variables:
+ DesignVars - Design variables set for the H_on, H_off, and Hgain model
parameters.

* Minimize_T_error - Requirement to minimize the temperature deviation from the
set-point.

+ LimitH_on - Requirement to limit the number of times the thermostat is turned on.

* H_ on_sigandT_error - Logged signals. H_on_sig represents when the heater is
on. T_error is the difference between the room temperature and the set-point.

Specify Parameter Constraint

3-199

3 Response Optimization

3-200

The H _on > H_off requirement is not yet defined. Use a custom requirement to specify
this constraint and configure the requirement to error if it is not satisfied.

In the New drop-down list, select Custom Requirement. The Create Requirement
dialog opens.

In this dialog, specify the following:

* Name - SwitchConstraint.

+ Type - Select Constrain the function output to be >= 0 from the Type list.
* Function - @sdoThermostat_SwitchingConstraint.

+ Error if constraint is violated - Select this check box.

Skip Model Simulation Based on Parameter Constraint Violation (GUI)

Create Requirement ...
Custom Requirement

Create a custom requirement. The optimizer evaluates the
specified function during optimization passing a structure with
fields containing the optimized design varnable values and logged
simulation results.

Mame: | SwitchConstraint

¥ Specify Function
Type: :Cﬂ-nsl:rain function cutputto be >=0

Function: | @sdoThermostat_SwitchingCenstraint

Error if constraint is violated

b Select Signals and Systems to Bound (Optional)

" Create Plot | Ok || Cancel || Help |

........................... -

The software calls the sdoThermostat_SwitchingConstraint function at each
optimization iteration with a structure containing all the design variables. The output
of the sdoThermostat_SwitchingConstraint function is the difference between

3-201

3 Response Optimization

3-202

the H_on and H_off values. This difference must be positive for the requirement to be
satisfied.

The software evaluates custom requirements that test parameter-only constraints, such
as SwitchConstraint, before simulating the model and evaluating the remaining
requirements.

+ If the constraint is violated while the Error if constraint is violated check box
is selected, the software does not simulate the model to evaluate the remaining
requirements. Instead, the solver assigns the cost function a NaN value for this
iteration, evaluates the terminating conditions, and continues.

+ If the constraint is violated while the Error if constraint is violated check box
is cleared, the solver will attempt to simulate the model to evaluate the remaining
requirements. Simulating the model may lead to a hard error; for example, simulating
the thermostat model when SwitchConstraint is violated will lead to an error. In
this case, the solver assigns the cost function a NaN value for this iteration, evaluates
the terminating conditions, and continues.

To examine the constraint function, type edit
sdoThermostat_SwitchingConstraint. The requirement that H on >H_ofFis
implemented asH_on -H_off >0

Optimize the Design

Click Optimize.

Skip Model Simulation Based on Parameter Constraint Violation (GUI)

DE! OPTIMZATION

RESPONSE OPTIMIZATION

Design Variables Set: |E DesignVars = / E MNew = F‘ Data to Plot: E'
Evaluate DesignVars -
Uncertain Variables Set: [Z] None = [Eseect pequrements (8] Ocsio Add Pt mﬂ Current
VARIABLES REQUIREMENTS | PLOTS | OPTIMIZATION | CLOSE |
LI @ Iteration plotl x| Iteration plot2 | Iteration plot3 % | Reration plot4 x
pl pl pl p!
Search wiorkspace variables P 7| [tteration plot 1 O x |Iteration plot 2 O x
Minimize_T_error LimitH_on
w MATLAB Workspace 404 s
Name « Value 35
. -06
@ SD0SessionData <1l clded... .
H tout <2894 do...
o 25 o -0.7
g .2
¥ ¥ s
w Medel Workspace (sdoThermostat) o
Name = Value 10 08
H H_off -0.5073 -
HH H_on 04824 E| =5 =
E Hgain 0.6604 lteration lteration
:F K 01000 Iteration plot 3 [mER gl Iteration plot 4 O x
¥ Design Optimization Workspace 5 DesignVars ; SwitchConstraint
Name = Value —+— SwitchConstraint
E DesignVars <3 para... - 24 : 088 --
@] DesignVarsl <3 para... (B :
|@| H_on_sig =1l Simul... ® 1 ®
@| LimitH on =1l sdor... T2 : =2
E PR
¥ Variable Preview 4 :
o i
= : ; : ; F
o 2 4 6 8 10
tteration lteration

3-203

3 Response Optimization

3-204

Iteration | F-count SwitchConstraint Minirize_T_error LimitH_on
(>=0) (min] (<=0)
0 8 1 39,6504 -0.5833
1 23 09176 30.1583 -0.5333
2 36 0.9253 2854509 -0.5333
3 45 09744 10.6240 -0.9167
4 65 0.9755 10.0181 -0.91867
5 al 0 9857 97189 -0.9167
6 93 0.9857 97189 -0.9167

Optimization started 04-0ct-2012 08:48:29

b

Optimization converged, 04-0ct-2012 08:48:51

Optimized variable values written to "DesignVars1” in the Design Optimization workspace

[Save teration...| |Display Options...| | Optimize

The Optimization Progress window appears and updates at each iteration. The

optimization successfully minimizes the temperature error while satisfying the switching
constraints.

During this optimization, the H_on and H_off values never approach the H on >
H_off constraint boundary. So, there is never a danger of violating the constraint.
However, changing the optimization algorithm may produce different behavior. For
example, changing the optimization algorithm from the default, 'Sequential Quadratic

Programming', to 'Active-Set' results in H_on and H_off values that are at the constraint

boundary. This violation triggers the SwitchConstraint requirement and prevents
model simulation for the relevant iterations.

View Optimized Model Response

Skip Model Simulation Based on Parameter Constraint Violation (GUI)

Simulate the model with the optimized thermostat settings. The optimized heater
operation is displayed in the Heater use scope where the upper axis is the delivered
heat and the lower axis the heater switch on times.

R LR R .

Time offzet: 0

The optimized room temperature is displayed in the Temperature scope.

3-205

3 Response Optimization

Se < i 0NS 05 =

Time offset: 0

Close the model

delete(sdotool ("sdoThermostat®))
bdclose("sdoThermostat®)

3-206

Optimizing Parameters for Robustness

Optimizing Parameters for Robustness

In this section...
“What Is Robustness?” on page 3-207
“Sampling Methods for Uncertain Parameters” on page 3-208

“Optimize Parameters for Robustness (GUI)” on page 3-210

What Is Robustness?

A design is robust when it's response does not violate design requirements under

model parameter variations. Your model may contain parameters whose values are not
precisely known. Such parameters vary over a given range of values and are defined as
uncertain parameters. You may know the nominal value and the range of values in which
these uncertain parameters vary.

You can use Simulink Design Optimization software to incorporate the parameter
uncertainty to test the robustness of your design. When you optimize parameters for
robustness, the optimization solver uses the responses computed using all the uncertain
parameter values to adjust the design variable values.

You can specify the same parameter both as a design and uncertain variable. However,
you cannot use a parameter both as a design and uncertain variable in the same
optimization run. Also, you cannot add uncertainty to controller or plant parameters
during optimization-based control design in the SISO Design Tool.

The uncertain variables can be scalar, vector, matrix or an expression.
You can test and optimize parameters for model robustness in the following ways:

+ Before Optimization. Specify the parameter uncertainty before you optimize
the parameters to meet the design requirements. In this case, the optimization
method optimizes the signals based on both nominal parameter values as well as the
uncertain values. This mode requires more computational time.

+ After Optimization. Specify the parameter uncertainty after you have optimized
the model parameters to meet design requirements. You can then test the effect of
the uncertain parameters by plotting the model's response. If the response violates
the design requirements, you can optimize the parameters again by including the
parameter uncertainty during the optimization.

3-207

3 Response Optimization

3-208

Related Examples

“Optimize Parameters for Robustness (GUI)” on page 3-210

More About

“Sampling Methods for Uncertain Parameters” on page 3-208

Sampling Methods for Uncertain Parameters

Sample values for uncertain parameters are a vector of numerical values. You can specify
the vector yourself or generate a vector of random numbers using the software. The
sample values you specify can be uniformly distributed or random. For example, four
sample values for two uncertain parameters ¢ and b in the range [0 3] and [1 2.5]
may look like the following figure.

There are two methods to determine the number of sample values to use during
optimization:

* Only the combination of minimum and maximum values (circled)

More About

0 a 3
& D
g 3

o

+ Combination of the entire set of values (all solid dots in the previous figure)

Tip Using only the minimum and maximum values during optimization increases the
computation speed when compared to using the entire set of values.

For the previous example, there are 4 combinations using the minimum and maximum
values and 16 combinations if you use all sample values.

In the Design Optimization tool, you specify the sampling method using the options as
shown in the following figure.

Create Uncertain Variables set: |UncVars

Variable Mominal Value Uncertain Values

[0.450.47 042 0.51 0.53 0.55]

Set Uncertain Values...

'@ Min and Max combinations only (2 combinations)

L All combinations (6 combinations)

3-209

3 Response Optimization

3-210

Related Examples

“Optimize Parameters for Robustness (GUI)” on page 3-210

More About

+ “What Is Robustness?” on page 3-207

Optimize Parameters for Robustness (GUI)

This example shows how to optimize parameters for model robustness.
1 Load a saved Design Optimization tool session.

load sldo_modell_desreq_optim_sdosession;
sdotool (SDOSessionData) ;

The sdotool command opens the following Simulink model and a saved Design
Optimization tool session.

¥ olis ;
'—’ FID > in Out

Unit Step
Controller Flant s

Step Respomnse

b4

The parameters of this model, Kp, Ki and Kd, have already been optimized to meet
the following step response requirements:

+ Maximum overshoot of 5%
+ Maximum rise time of 10 seconds

+ Maximum settling time of 30 seconds

2 Specify parameter uncertainty.

a Inthe Uncertain Variables Set drop-down list, select New.

More About

RESPORSE QPFTIMIZATION

Design Variables Set: e DesignVars = z @ Select E PlotCurrent

Uncertain Variables Set: [%%] None ~ Z [l Add Plot

Existing Uncertain Yariables

WARIS
Data Browser "5’

Create New Uncertain Yariables

Search waorkspace varial

New...
¥ MATLAB Workspace Eﬂj Use bo specify variables lha&an take

on a range of values during optimization

Name.a

A window opens where you specify uncertain variables.

Create Uncertain Variables set:
| Variable INominaIVaIueI Uncertain Values .]Variable Current value
l lkd 0
—— K 0
|

|L| Kp 1

ER- ¥ i \
-~ eta 0.5 Ide modell desre

| Set Uncertain Values... |
Sampling method
@ Min and Max combinations only (0 combinations)

() All combinations (0 combinations)

b Click wO and zeta to select them.

‘ <]
Click to add the selected parameters to an uncertain variables set.

3-211

3 Response Optimization

Create Uncertain Vanables set; |UncYars

Variable Mominal Value Uncertain Values Variah
wi 0.5 [0.450.55] = Kd
zeta 0.5 [0.450.55] K
i
* K.

Set Uncertain Values...

Sampling method

@ Min and Max combinations only (4 combinations}

(71 All combinations (4 combinations)

The software displays the following parameter settings:

+ Variable — Parameter name

+ Nominal Value — Nominal value of the parameters as specified in the
Simulink model

* Uncertain Values — Values that the uncertain parameter can take. By
default, the maximum and minimum values vary by 10% of the nominal
value.

The total number of sample values to use during optimization is a
combination of the maximum and minimum values of the uncertain

parameters.

The check-box indicates that the parameter is included in the uncertain variable
set. The default uncertain variable set name is UncVars.

Click OK. A new variable UncVars appears in Design Optimization
Workspace of the Design Optimization tool.

3-212

Specify Random Values

Specify Random Values

Instead of specifying sample values, you can auto-generate random values in a
specific range. Select a parameter and click Set Uncertain Values.

Create Uncertain Variables set: | UncVars

Variable | Nomi... Uncertain Values
[0.45 0.55]

© Set Uncertain Values...

A window opens where you specify the range and the number of samples.

Generate uncertain values for 'w'

Mominal value: 0.5

Distribution: Uniform
Minimum: 0,45

Maximum: 0,55

Mumber of samples: |2

3 Test the model robustness to the uncertain parameters.

a Click Plot Current Response.

E Open Block Dialog
Plot h

i Refresh Requirements
Current Response

PLOTS ELOCK

The step response plot, displaying the requirements, updates.

3-213

3 Response Optimization

sldo_modell_desreq_optim/Step Respo... X]

sldo_model _desred_optimfStep Response

1.2y

Amplituds

(1] =) UUSRUSSNUSNUUSUUS [SUSIUUIU SUUEIUUEN SUUUIUUN SUSIUIO NUUIUUUN SUTUUUN SUSIIUS s J
u] 3 10 15 20 25 30 35 40 45 a0

Time [seconds)

* The solid curve corresponds to the model response computed using the
optimized parameters and nominal values of the uncertain parameter.

* The four dashed curves correspond to the model response with the minimum
and maximum values of the uncertain parameters.

The dashed plot lines show that the response during the period of 10 to 20
seconds violates the design requirements.

4 Optimize the parameters for model robustness. Click Optimize.

3-214

Specify Random Values

3 RESPOMSE QPFTIMIZATION

- f @ Select EE. PlotCurrent Response IE
;. @ Options o
Cf /| [Ginew~ [JAddPiot ~ Dpt'mE

-.-c_____. . """J:J-..1]:_ZA-|-IG M

The Optimization Progress window opens which displays the optimization iterations.

After the optimization completes, the message Optimization converged indicates
that the final model response computed by varying the uncertain parameters meets
the specified design requirements.

n Optimization Progress EI@
Iteration | F-count Step Response (Upper)
(<=0)
0 7 0.0317
1 15 0.0031
2 23 4 8922e-05
3 3 5.0549e-09

Optimization started 04-Feb-2013 19:58:27

i »

Optimized variable values written to 'DesignVars’ in the Design Optimization workspace

[Save teration...| |Display Options...| [Optimize |

3-215

3 Response Optimization

5 Examine the responses.

Tip To view only the final responses of the model, right-click the white area in the
plot and uncheck Responses > Show Iteration Responses.

[sldo_modell_desreq_optim_e'Step Respo.. ><] Optimization Progress *

sldo_madel _desreq_optimStep Response

12y

Am plitucde

o o 10 15 20 25 30 35 40 43 a0

Time (seconds)

The final responses appear as the thick solid and dashed curves. The nominal and
uncertain responses with parameter variations now meet the design requirements.

More About

+ “What Is Robustness?” on page 3-207
+ “Sampling Methods for Uncertain Parameters” on page 3-208

3-216

More About

Related Examples
. “Design Optimization with Uncertain Variables (Code)” on page 3-177

3-217

3 Response Optimization

Accelerating Model Simulations During Optimization

3-218

In this section...

“About Accelerating Optimization” on page 3-218
“Limitations” on page 3-218

“Setting Accelerator Mode for Response Optimization” on page 3-218

About Accelerating Optimization

You can accelerate the response optimization computations by changing the simulation
mode of your Simulink model. Simulink Design Optimization software supports Normal
and Accelerator simulation modes. For more information about these modes, see “How
Acceleration Modes Work” in the Simulink documentation.

The default simulation mode is Normal. In this mode, Simulink uses interpreted code,
rather than compiled C code during simulations.

In the Accelerator mode, Simulink Design Optimization software runs simulations
during optimization with compiled C code. Using compiled C code speeds up the
simulations and reduces the time to optimize the model response signals.

Limitations

You cannot use the Accelerator mode if your model contains algebraic loops. If the

model contains MATLAB function blocks, you must either remove them or replace them
with “Fen” blocks.

If the model structure changes during optimization, the model is compiled to regenerate
the C code for each iteration. Using the Accelerator mode increases the computation
time. To learn more about code regeneration, see “Code Regeneration in Accelerated
Models” in the Simulink documentation.

Setting Accelerator Mode for Response Optimization

To set the simulation mode to Accelerator, open the Simulink model window and
perform one of the following actions:

+ Select under Simulation > Mode > Accelerator.

Accelerating Model Simulations During Optimization

Choose Accelerator from the drop-down list as shown in the next figure.

'bi engine_idle_speed
File Edit

View Display Diagram

=5 E=8
Simulation Analysis Code TJools Help
-8 a8 w@ B2 40P = @ w @ | @~
engine_idle_speed Accelerator
® |(Paengine_idle_speed

Rapid Accelerator
Software-in-the-Loop (SIL)
Processor-in-the-Loop (PIL)
External

Idle Speed Engine Model

Tip To obtain the maximum performance from the Accelerator mode, close all
Scope blocks in your model.

3-219

3 Response Optimization

Speedup Using Parallel Computing

3-220

In this section...

“When to Use Parallel Computing for Response Optimization” on page 3-220

“How Parallel Computing Speeds Up Optimization” on page 3-220

When to Use Parallel Computing for Response Optimization

You can use Simulink Design Optimization software with Parallel Computing Toolbox
software to speed up the response optimization of a Simulink model. Using parallel
computing may reduce model optimization time in the following cases:

* The model contains a large number of tuned parameters, and the Gradient
descent method is selected for optimization.

+ The Pattern search method is selected for optimization.

* The model contains a large number of uncertain parameters and uncertain parameter
values.

* The model is complex and takes a long time to simulate.

When you use parallel computing, the software distributes independent simulations to
run them in parallel on multiple MATLAB sessions, also known as workers. Distributing
the simulations significantly reduces the optimization time because the time required to
simulate the model dominates the total optimization time.

For information on how the software distributes the simulations and the expected
speedup, see “How Parallel Computing Speeds Up Optimization” on page 3-220.

For information on configuring your system and using parallel computing, see “How to
Use Parallel Computing” on page 3-224.

How Parallel Computing Speeds Up Optimization

You can enable parallel computing with the Gradient descent and Pattern search
optimization methods. When you enable parallel computing, the software distributes
independent simulations during optimization on multiple MATLAB sessions. The
following topics describe which simulations are distributed and the potential speedup
using parallel computing:

Speedup Using Parallel Computing

+ “Parallel Computing with the Gradient Descent Method” on page 3-221
+ “Parallel Computing with the Pattern Search Method” on page 3-222

Parallel Computing with the Gradient Descent Method

When you select Gradient descent as the optimization method, the model is simulated
during the following computations:

+ Constraint and objective value computation — One simulation per iteration

+ Constraint and objective gradient computations — Two simulations for every tuned
parameter per iteration

* Line search computations — Multiple simulations per iteration

The total time, Ttotal , taken per iteration to perform these simulations is given by the
following equation:

Ttotal =T + (Npx2xT)+ (NisxT) =T x(1 +(2x Np) + Nls)

where T is the time taken to simulate the model and is assumed to be equal for all
simulations, Np is the number of tuned parameters, and Nis is the number of line

searches. Nis is difficult to estimate and you generally assume it to be equal to one, two,
or three.

When you use parallel computing, the software distributes the simulations required for
constraint and objective gradient computations. The simulation time taken per iteration

when the gradient computations are performed in parallel, TtotwlP , 1s approximately
given by the following equation:

TtotalP = T+(ceil(%)x2 xT)+(NisxT) = Tx(l+2xceil[%]+ Nis)

w w

where Nw is the number of MATLAB workers.

Note: The equation does not include the time overheads associated with configuring the
system for parallel computing and loading Simulink software on the remote MATLAB
workers.

3-221

3 Response Optimization

3-222

The expected speedup for the total optimization time is given by the following equation:

1+2><ceil(Np)+ Nis
N,

TtotalP _ w

Ttotal 1+(2XNp)+le

For example, for a model with N,=3, N,=4, and Nys=3, the expected speedup equals

1+2xceil(2]+3
=0.6.

1+(2x%x3)+3

For an example of the performance improvement achieved with the Gradient descent
method, see Improving Optimization Performance Using Parallel Computing.

Parallel Computing with the Pattern Search Method

The Pattern search optimization method uses search and poll sets to create and
compute a set of candidate solutions at each optimization iteration.

The total time, Ttotal, taken per iteration to perform these simulations, is given by the
following equation:

Ttotal = (T'x Npx Nss)+ (T x Npx Nps) = T X Np x(Nss + Nps)

where T is the time taken to simulate the model and is assumed to be equal for all
simulations, Np is the number of tuned parameters, Nss is a factor for the search set

size, and Nps is a factor for the poll set size. Nss and Nps are typically proportional to
Np.

When you use parallel computing, Simulink Design Optimization software distributes
the simulations required for the search and poll set computations, which are evaluated in
separate “parfor” loops. The simulation time taken per iteration when the search and poll

sets are computed in parallel, TtotalP , is given by the following equation:

TrotalP = (T x ceil(pr&)) +(T x ceil(Np x Nps))
Nuw Nuw

. Nss . Nps
=T x(ceil(Npx —) + ceil(Np x)
ceil(Np N celtl(Np N

w

Speedup Using Parallel Computing

where Nw is the number of MATLAB workers.

Note: The equation does not include the time overheads associated with configuring the
system for parallel computing and loading Simulink software on the remote MATLAB
workers.

The expected speed up for the total optimization time is given by the following equation:

ceil(Npx %) + ceil(Npx]]\\;”s)

TtotalP _ w

Ttotal Npx(Nss+ Nps)

For example, for a model with N,=3, N,=4, Ngs=15, and Nps=2, the expected speedup

ceil(3 x 1475) + ceil(3 x%)

equals =0.27.

3x(1A5+2)

Note: Using the Pattern search method with parallel computing may not speed up
the optimization time. To learn more, see “Why do I not see the optimization speedup I
expected using parallel computing?” on page 3-238

For an example of the performance improvement achieved with the Pattern search
method, see Improving Optimization Performance Using Parallel Computing.

Related Examples
. “How to Use Parallel Computing” on page 3-224

3-223

3 Response Optimization

How to Use Parallel Computing

3-224

In this section...

“Configure Your System for Parallel Computing” on page 3-224
“Model Dependencies” on page 3-224

“Optimize Design Using Parallel Computing (GUI)” on page 3-225
“Optimize Design Using Parallel Computing (Code)” on page 3-228

“Troubleshooting” on page 3-229

Configure Your System for Parallel Computing

You can speed up model optimization using parallel computing on multicore processors or
multiprocessor networks. You can use parallel computing with the Design Optimization
tool and sdo.optimize. When you optimize the model using parallel computing,

the software uses the available parallel pool. If no parallel pool is available and
Automatically create a parallel pool is selected in your Parallel Computing

Toolbox preferences, then the software starts a parallel pool using the settings in those
preferences.

When you begin the optimization, the software automatically detects model dependencies
and temporarily adds them to the parallel pool workers. However, to ensure that workers
are able to access the undetected file and path dependencies, create a cluster profile that
specifies the same. The parallel pool used to optimize the model must be associated with
this cluster profile. For information regarding creating a cluster profile, see “Create and
Modify Cluster Profiles” in the Parallel Computing Toolbox documentation.

To manually open a parallel pool that uses a specific cluster profile, use:
parpool (MyProfile);

MyProfile is the name of a cluster profile.

Model Dependencies

Model dependencies are any referenced models, data (model variables etc.), S-functions,
and additional files necessary to run the model. Before starting the optimization, you
must verify that all the remote workers can access the model dependencies. Otherwise,
you may get unexpected results.

How to Use Parallel Computing

Making File Dependencies Accessible to Remote Workers

When you use parallel computing, the Simulink Design Optimization software helps you
identify model path dependencies. To do so, the software uses the Simulink Manifest
Tools. However, the dependency analysis may not find all the files required by your
model. For example, folders containing code for your model or block callbacks may

not be detected. To learn more, see “Scope of Dependency Analysis” in the Simulink
documentation.

If your model has undetected file dependencies, then specify them in the Files and
Folders section of the cluster profile.

If your model has path dependencies that are undetected or inaccessible by the remote
workers, then add them to the list of model path dependencies. For more information,
see:

* “Optimize Design Using Parallel Computing (GUI)” on page 3-225
* “Optimize Design Using Parallel Computing (Code)” on page 3-228

Making Data Dependencies Accessible to Remote Workers

You can check whether a model has access to all its data dependencies, such as variables
required for model initialization. On your local machine, complete the following steps:
1 Close the model, and clear the MATLAB workspace.

2 Load the model. Verify that only the specified dependencies are accessible to the
model.

3 Simulate the model. If the model errors, a dependency is missing. For example, if a
simulation error occurs because a variable is not defined, you can correct the problem
in one of the following ways:

Add the variable to the model workspace.

* Create a MATLAB script that creates the variable, and add the file to the list of
dependencies. Modify the PreLoadFcn callback of the model to add a call to the
MATLAB script.

Optimize Design Using Parallel Computing (GUI)

To optimize a model response using parallel computing in the Design Optimization tool:

3-225

3 Response Optimization

3-226

Ensure that the software can access parallel pool workers that use the appropriate
cluster profile.

For more information, see “Configure Your System for Parallel Computing” on page
3-224.

Open the Design Optimization tool for the model.

Configure the design variables, design requirements, and, optionally, optimization
settings.

For more information, see “Specify Design Variables” on page 3-62, “Specify Time-
Domain Design Requirements” on page 3-23, “Specify Frequency-Domain Design
Requirements” on page 3-40, and “Optimization Options” on page 3-74.

Open the Parallel Options tab.

a In the Design Optimization tool, click Options.

2

@ Options o
% Optimize
OPTIMIZATION

b Click the Parallel Options tab.

[] Use the parallel pool during optimization

Model path dependencies

Mo model path dependencies.

Add path dependency... Sync path dependencies from model

| ok || cancel || Hep |

How to Use Parallel Computing

5 Select the Use the parallel pool during optimization check box.

This option checks for model path dependencies in your Simulink model and displays
them in the Model path dependencies list box.

Note: The automatic path dependencies check may not detect all the path
dependencies in your model.

For more information, see “Model Dependencies” on page 3-224.

| General Optionsl Optimization Optionsl Parallel Options | Linearization Options|

Use the parallel pool during optimization

Model path dependencies
C:\matIab\to0Ibox\parallelModelDependsl

’ Add path dependency... l ’ Sync path dependencies from model

| ok || Cancel || Help |

6 (Optional) Add the path dependencies that the automatic check does not detect.

Specify the paths in the Model path dependencies list box. You can specify the
paths separated with a semicolon or on a new line.

3-227

3 Response Optimization

3-228

9
10

| General Optionsl Optimization Options| Parallel Options | Linearization Options

Use the parallel pool during optimization

Model path dependencies

Ci\matlab\toolbox\parallelMedelDepends; C:hmatlab\work\project
C:\matlab\requirements\project]

’ Add path dependency...] ’ Sync path dependencies from model

[ok |[Cancel |[Help |

Alternatively, you can click Add path dependency to open a dialog box, and select
the folder to add.

(Optional) In the Model path dependencies list box, update the paths on local
drives to make them accessible to remote workers. For example, change C:\ to \\\
\hostname\\C$\\.

(Optional) If you modify the Simulink model such that it introduces a new path
dependency, then you must resync the path dependencies. Click Sync path
dependencies from model in the Parallel Options tab to rerun the automatic
dependency check for your model.

This action updates the Model path dependencies list box with any new path
dependency found in the model.

Click OK.

In the Design Optimization tool, click Optimize to optimize the model response
using parallel computing.

For information on troubleshooting problems related to optimization using parallel
computing, see “Troubleshooting” on page 3-229.

Optimize Design Using Parallel Computing (Code)

To optimize a model response using parallel computing at the command line:

How to Use Parallel Computing

w

Ensure that the software can access parallel pool workers that use the appropriate
cluster profile.

For more information, see “Configure Your System for Parallel Computing” on page
3-224.

Open the model.

Specify design requirements and design variables.

Enable parallel computing using an optimization option set, opt.

opt = sdo.OptimizeOptions;

opt.UseParallel = "always”;

Find the model path dependencies.

dirs = sdo.getModelDependencies(modelname)

Note: sdo.getMode lDependencies may not detect all the path dependencies in
your model.

For more information, see “Model Dependencies” on page 3-224.

(Optional) Modify dirs to include the path dependencies that
sdo.getModelDependencies does not detect.

dirs = vertcat(dirs, "\\hostname\C$\matlab\work")
(Optional) Modify dirs to make paths on local drives accessible to remote workers.

dirs = regexprep(dirs,“C:/", "\\\\hostname\\C$\\ ")
Add the path dependencies for optimization.

opt.ParallelPathDependencies = dirs;
Run the optimization.

[pOpt,opt_info] = sdo.optimize(opt_fcn,param,opt);

For information on troubleshooting problems related to optimization using parallel
computing, see “Troubleshooting” on page 3-229.

Troubleshooting

“Why are the optimization results with and without using parallel computing
different?” on page 3-230

3-229

3 Response Optimization

3-230

“Why do I not see the optimization speedup I expected using parallel computing?” on
page 3-230

“Why does the optimization using parallel computing not make any progress?” on
page 3-231

“Why does the optimization using parallel computing not stop when I click the Stop
optimization button?” on page 3-231

Why are the optimization results with and without using parallel computing different?

Different numerical precision on the client and worker machines can produce
marginally different simulation results. Thus, the optimization method can take a
completely different solution path and produce a different result.

The client and worker machines must have models in identical states. For example,
you must verify that the model running on the client uses exactly the same variable
values as the workers. You must also verify that the client and workers are accessing
model dependencies in identical states.

When you use parallel computing with the Pattern search method, the search is
more comprehensive and can result in a different solution.

To learn more, see “Parallel Computing with the Pattern Search Method” on page
3-222.

Why do | not see the optimization speedup | expected using parallel computing?

When you optimize a model that does not have a large number of parameters or does
not take long to simulate, you might not see a speedup in the optimization time. In
such cases, the overhead associated with creating and distributing the parallel tasks
outweighs the benefits of running the optimization in parallel.

Using the Pattern search method with parallel computing might not speed up

the optimization time. Without parallel computing, the method stops the search at
each iteration when it finds a solution better than the current solution. The candidate
solution search is more comprehensive when you use parallel computing. Although
the number of iterations might be larger, the optimization without using parallel
computing might be faster.

To learn more about the expected speedup, see “Parallel Computing with the Pattern
Search Method”.

How to Use Parallel Computing

Why does the optimization using parallel computing not make any progress?

In some cases, the gradient computations on the remote worker machines may silently
error out when you use parallel computing. In such cases, the Optimization Progress
window shows that the F(x) and max constraint values do not change, and the
optimization terminates after two iterations with the message Unable to satisfy
constraints. To troubleshoot the problem:

1 Run the optimization for a few iterations without parallel computing to see if the
optimization progresses.

2 Check whether the remote workers have access to all model dependencies. Model
dependencies include data variables and files required by the model to run.

To learn more, see “Model Dependencies”.

Why does the optimization using parallel computing not stop when | click the Stop optimization
button?

When you use parallel computing, the software must wait until the current optimization
iteration completes before it notifies the workers to stop the optimization. The
optimization does not terminate immediately when you click Stop, and, instead, appears
to continue running.

See Also

sdo.OptimizeOptions | parpool | sdo.getModelDependencies | sdo.optimize

Related Examples

. “Optimizing Time-Domain Response of Simulink® Models Using Parallel
Computing” on page 3-245

More About
. “Speedup Using Parallel Computing” on page 3-220

3-231

3 Response Optimization

Optimization Does Not Make Progress

3-232

In this section...

“Should I worry about the scale of my responses and how constraints and design
requirements are discretized?” on page 3-232

“Why don't the responses and parameter values change at all?” on page 3-232

“Why does the optimization stall?” on page 3-232

Should | worry about the scale of my responses and how constraints and
design requirements are discretized?

No. Simulink Design Optimization software automatically normalizes constraints, design
requirement and response data.

Why don't the responses and parameter values change at all?

The optimization problem you formulated might be nonsmooth. This means that small
parameter changes have no effect on the amount by which response signals satisfy or
violate the constraints and only large changes will make a difference. Try switching to
a search-based method such as simplex search or pattern search. Alternatively, look for
initial guesses outside of the dead zone where parameter changes have no effect. If you
are optimizing the response of a Simulink model, you could also try removing nonlinear
blocks such as Quantizer or Dead Zone.

Why does the optimization stall?

When optimizing a Simulink model, certain parameter combinations can make the
simulation stall for models with strong nonlinearities or frequent mode switching. In
these cases, the ODE solvers take smaller and smaller step sizes. Stalling can also occur
when the model's ODEs become too stiff for some parameter combinations. A symptom
of this behavior is when the Simulink model status is Running and clicking the Stop
button fails to interrupt the optimization. When this happens, you can try one of the
following solutions:

* Switch to a different ODE solver, especially one of the stiff solvers.

* Specify a minimum step size.

Optimization Does Not Make Progress

Disable zero crossing detection if chattering is occurring.

Tighten the lower and upper bounds on parameters that cause simulation difficulties.
In particular, eliminate regions of the parameter space where some model
assumptions are invalid and the model behavior can become erratic.

3-233

3 Response Optimization

Optimization Convergence

In this section...

“What to do if the optimization does not get close to an acceptable solution?” on page
3-234

“Why does the optimization terminate before exceeding the maximum number
of iterations, with a solution that does not satisfy all the constraints or design
requirements?” on page 3-235

“What to do if the optimization takes a long time to converge even though it is close to a
solution?” on page 3-235

“What to do if the response becomes unstable and does not recover?” on page 3-236

What to do if the optimization does not get close to an acceptable
solution?

3-234

If you are using pattern search, check that you have specified appropriate maximum
and minimum values for all your tuned parameters or compensator elements. The
pattern search method looks inside these bounds for a solution. When they are set to
their default values of Inf and - Inf, the method searches within £100% of the initial
values of the parameters. In some cases this region is not large enough and changing
the maximum and minimum values can expand the search region.

Your optimization problem might have local minima. Consider running one of the
search-based methods first to get closer to an acceptable solution.

Reduce the number of tuned parameters and compensator elements by removing from
the design variables or from the Compensators pane (when using a SISO Design
Task) those parameters that you know only mildly influence the optimized responses.
After you identify reasonable values for the key parameters, add the fixed parameters
back to the tunable list and restart the optimization using these reasonable values as
initial guesses.

The software may have encountered errors during the optimization. Review the errors
to determine if you can make changes to improve the optimization results. Changes
may require modifications to the model, requirements, or optimization settings.

+ In the Design Optimization tool, the software creates a structure named
EvalErrors in the Design Optimization Workspace when the optimization
completes with errors. Export this structure to the MATLAB workspace and
examine its contents at the command line. EvalErrors has two fields, Errors

Optimization Convergence

and DesignVars, containing the errors encountered during optimization and
the corresponding design variable values. To reproduce a specific error, use
sdo.setValuelnModel to run the model using the design variables that
correspond to the error.

+ At the command line, the second output of sdo.optimize, opt_info,
is a structure that provides information regarding the optimization.
opt_info.exitflag identifies the reason the optimization terminated. For more
information regarding exit flags, see “Exit Flags and Exit Messages”.

Why does the optimization terminate before exceeding the maximum
number of iterations, with a solution that does not satisfy all the
constraints or design requirements?

It might not be possible to achieve your specifications. Try relaxing the constraints

or design requirements that the response signals violate the most. After you find an
acceptable solution to the relaxed problem, tighten some constraints again and restart
the optimization.

The optimization might have converged to a local minimum that is not a feasible
solution. Restart the optimization from a different initial guess and/or use one of
the search-based methods to identify another local minimum that satisfies the
constraints.

What to do if the optimization takes a long time to converge even though
it is close to a solution?

In a Design Optimization tool, click Stop to interrupt the optimization when you
think the current optimized response signals are acceptable.

When you use a SISO Design Task, click Stop Optimization in the Optimization
panel of the Response Optimization node in the Control and Estimation Tools
Manager, when you think the current optimized response signals are acceptable.

If you use the gradient descent method, try restarting the optimization. Restarting
resets the Hessian estimate and might speed up convergence.

Increase the convergence tolerances in the Optimization Options dialog to force
earlier termination.

Relax some of the constraints or design requirements to increase the size of the
feasibility region.

3-235

3 Response Optimization

3-236

What to do if the response becomes unstable and does not recover?

While the optimization formulation has explicit safeguards against unstable or divergent
response signals, the optimization can sometimes venture into an unstable region where
simulation results become erratic and gradient methods fail to find a way back to the
stable region. In these cases, you can try one of the following solutions:

* Add or tighten the lower and upper bounds on compensator element and parameter
values. Instability often occurs when you allow some parameter values to become too
large.

+ Use a search-based method to find parameter values that stabilize the response
signals and then start the gradient-based method using these initial values.

* When optimizing responses in a SISO Design Task, you can try adding additional
design requirements that achieve the same or similar goal. For example, in addition
to a settling time design requirement on a step response plot, you could add a settling
time design requirement on a root-locus plot that restricts the location of the real
parts of the poles. By adding overlapping design requirements in this way, you can
force the optimization to meet the requirements.

Optimization Speed and Parallel Computing

Optimization Speed and Parallel Computing

In this section...

“How can I speed up the optimization?” on page 3-237

“Why are the optimization results with and without using parallel computing different?”
on page 3-238

“Why do I not see the optimization speedup I expected using parallel computing?” on
page 3-238

“Why does the optimization using parallel computing not make any progress?” on page
3-238

“Why does the optimization using parallel computing not stop when I click the Stop
optimization button?” on page 3-239

How can | speed up the optimization?

The optimization time is dominated by the time it takes to simulate the model.
When optimizing a Simulink model, you can enable the Accelerator mode using
Simulation > Mode > Accelerator in the Simulink Editor, to dramatically reduce
the optimization time.

Note: The Rapid Accelerator mode in Simulink software is not supported for speeding
up the optimization. For more information, see “Accelerating Model Simulations
During Optimization”.

The choice of ODE solver can also significantly affect the overall optimization time.
Use a stiff solver when the simulation takes many small steps, and use a fixed-step
solver when such solvers yield accurate enough simulations for your model. (These
solvers must be accurate in the entire parameter search space.)

Reduce the number of tuned compensator elements or parameters and constrain their
range to narrow the search space.

When specifying parameter uncertainty (not available when optimizing responses in
a SISO Design Task), keep the number of sample values small since the number of
simulations grows exponentially with the number of samples. For example, a grid of 3
parameters with 10 sample values for each parameter requires 10°=1000 simulations
per iteration.

3-237

3 Response Optimization

3-238

Why are the optimization results with and without using parallel
computing different?

Different numerical precision on the client and worker machines can produce
marginally different simulation results. Thus, the optimization method can take a
completely different solution path and produce a different result.

The client and worker machines must have models in identical states. For example,
you must verify that the model running on the client uses exactly the same variable
values as the workers. You must also verify that the client and workers are accessing
model dependencies in identical states.

When you use parallel computing with the Pattern search method, the search is
more comprehensive and can result in a different solution.

To learn more, see “Parallel Computing with the Pattern Search Method” on page
3-222.

Why do | not see the optimization speedup | expected using parallel
computing?

When you optimize a model that does not have a large number of parameters or does
not take long to simulate, you might not see a speedup in the optimization time. In
such cases, the overhead associated with creating and distributing the parallel tasks
outweighs the benefits of running the optimization in parallel.

Using the Pattern search method with parallel computing might not speed up

the optimization time. Without parallel computing, the method stops the search at
each iteration when it finds a solution better than the current solution. The candidate
solution search is more comprehensive when you use parallel computing. Although
the number of iterations might be larger, the optimization without using parallel
computing might be faster.

To learn more about the expected speedup, see “Parallel Computing with the Pattern
Search Method”.

Why does the optimization using parallel computing not make any
progress?

In some cases, the gradient computations on the remote worker machines may silently
error out when you use parallel computing. In such cases, the Optimization Progress

Optimization Speed and Parallel Computing

window shows that the F(X) and max constraint values do not change, and the
optimization terminates after two iterations with the message Unable to satisfy
constraints. To troubleshoot the problem:

1 Run the optimization for a few iterations without parallel computing to see if the
optimization progresses.
2 Check whether the remote workers have access to all model dependencies. Model

dependencies include data variables and files required by the model to run.

To learn more, see “Model Dependencies”.

Why does the optimization using parallel computing not stop when I click
the Stop optimization button?

When you use parallel computing, the software must wait until the current optimization
iteration completes before it notifies the workers to stop the optimization. The
optimization does not terminate immediately when you click Stop, and, instead, appears
to continue running.

3-239

3 Response Optimization

Undesirable Parameter Values

3-240

In this section...

“What to do if the optimization drives the tuned compensator elements and parameters
to undesirable values?” on page 3-240

“What to do if the optimization violates bounds on parameter values?” on page 3-240

What to do if the optimization drives the tuned compensator elements
and parameters to undesirable values?

When a tuned compensator element or parameter is positive, or when its value 1s
physically constrained to a given range, enter the lower and upper bounds (Minimum
and Maximum) in one of the following:

Dialog box to select design variables (in Design optimization tool)

+ Compensators pane (in a SISO Design Task)

This information helps guide the optimization method towards a reasonable solution.
Specify initial guesses that are within the range of desirable values.

In the Compensators pane in a SISO Design Task, verify that no integrators/
differentiators are selected for optimization. Optimizing the pole/zero location of
integrators/differentiators can result in drastic changes in the system gain and lead to
undesirable values.

What to do if the optimization violates bounds on parameter values?

The Gradient descent optimization method “fmincon” violates the parameter bounds
when it cannot simultaneously satisfy the signal constraints and the bounds. When this
happens, try one of the following:

Specify a different value for the parameter bound and restart the optimization. A
guideline is to adjust the bound by 1% of the typical value.

For example, for a parameter with a typical value of 1 and lower bound of O, change
the lower bound to 0.01.

Relax the signal constraints and restart the optimization. This approach results in a
different solution path for the Gradient descent method.

Undesirable Parameter Values

Restart the optimization immediately after it terminates by clicking Optimize in the
Design Optimization tool. This approach uses the previous optimization results as the
starting point for the next optimization cycle to refine the results.

Use the following two-step approach to perform the optimization:

1

Run an initial optimization to satisfy the signal constraints.

For example, run the optimization using the Simplex search method. This
method satisfies the signal constraints but does not support the bounds on
parameter values. The results obtained using this method provide the starting
point for the optimization performed in the next step. To learn more about this
method, see the “fminsearch” function reference page in the Optimization Toolbox
documentation.

Reconfigure the optimization by selecting a different optimization method to
satisfy both the signal constraints and the parameter bounds.

For example, change the optimization method to Gradient descent and run
the optimization again.

Tip If Global Optimization Toolbox software is installed, you can select the Pattern
search optimization method to optimize the model response.

3-241

3 Response Optimization

Reverting to Initial Parameter Values

3-242

How do I quit an optimization and revert to my initial parameter values?

Before running an optimization, do one of the following:

+ In the Design Optimization tool, click Options. Uncheck Update model at end of
optimization in the General Options tab.

In the Design Optimization tool, click Options. Select Save optimized variable
values as new design variable set in the General Options tab.

Make a copy of the design variable set in the Design Optimization Workspace.

If you want to revert to the initial parameter values after the optimization terminates
or you stop the optimization by clicking Stop, select the design variable that contains

the initial values in the Design Variable Set drop-down list and click adjacent
to Design variables Set. Select the design variables in the dialog box and click
Update model variable values to revert the model parameters to their original
values.

When using a SISO Design Task, the Start Optimization button becomes a Stop
Optimization button after the optimization has begun. To quit the optimization,
click the Stop Optimization button. To revert to the initial parameter values, select
Edit > Undo Optimize compensators from the menu in the SISO Design Tool
window.

Manage Design Optimization Tool Session

Manage Design Optimization Tool Session

In this section...

“Save a Session” on page 3-243

“Load a Session” on page 3-243

Save a Session

Saving a session lets you reuse your settings and optimization results later. These
settings include design requirements, design and uncertain variables, plots and
optimization settings. Each Design Optimization tool session is associated with a
Simulink model.

You can save the session as a MAT-file or workspace variable:

* To save the session as a MAT-file, click Save in the Design Optimization tab. A
window opens where you specify the MAT-file name.

+ To save the session as a model or MATLAB workspace variable, select Save to model
workspace or Save to base workspace in the Save drop-down list.

DESIGH OPTIMIZATION

=] Open E

Save w Response
Save SDOTOOL Session

Save to model workspace

Save to base wurkspit}e

Load a Session
You can load a saved MAT-file or workspace session:

1 Open a Design Optimization tool for the model.

2 Toload a MAT-file, click Open in the Design Optimization tab. A window opens
where you select the MAT-file to load.

3-243

3 Response Optimization

To load a workspace variable, select Open from model workspace or Open from
base workspace in the Open drop-down list.

DESIGM OPTIMIZATION

Qpen = E

Open SDOTOOL Session

Open from model workspace

Open from base workspace

3-244

Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing

Optimizing Time-Domain Response of Simulink® Models Using
Parallel Computing

This example shows how to use parallel computing to optimize the time-domain
response of a Simulink® model. You use Simulink® Design Optimization™ and Parallel
Computing Toolbox™ to tune the gains of a discrete PI controller of a boiler to meet the
design requirements. The example also shows how the software automatically handles
model path dependencies.

This example requires Parallel Computing Toolbox™.
Opening the Model

The Simulink model consists of a boiler model and a discrete PI controller. When
using parallel computing, Simulink Design Optimization performs an automatic path
dependency check, which recognizes the boiler model library as an installed library.

In order to illustrate how model path dependencies are handled when using parallel
computing, we copy the boiler model and library block to a temporary folder before
opening the model.

pathToLib = boilerpressure_setup; %Copies boiler model and library to a temporary fol
addpath(pathToLib);
open_system("boilerpressure_demo")

Starting parpool using the “local® profile ... connected to 4 workers.

3-245

3 Response Optimization

3-246

Boiler control
Capyright 2004-2011 Tha MathiVass, Ine

TeD suath Boile! model W™ CONRE" SIWNEFERT ANil DS
Sises are sledm iampesiee Bnd Bel™ volume Daaesws Pl
Soniraller b mainkain dnam preskacs # rominal oondiion

Crum praauns ooeainsint

Click on the Cptimise Bumon i T
0L 15 aptimise the Kp, Ki g of the
P1 Pradaurs regulstsr blag

Design Requirements

The boiler pressure is regulated by a discrete PI controller. The design requirement for
the controller is to limit the pressure variation of the boiler within +-%5 of the nominal
pressure.

The initial controller has fairly good regulation characteristics but in the presence of
additional heat disturbances, modeled by the Heat Disturbance block, we want to tune
the controller performance to provide tighter pressure regulation.

Double-click the 'Response Optimization GUI with preloaded data' block in the Simulink
model to open a pre-configured SDOTOOL. The SDOTOOL is configured with:

1. Upper and lower bounds representing a +-5% allowable range on the drum pressure

2. A reference tracking objective to minimize the deviation of the drum pressure from
nominal

3. The PI controller gains, Kp and Ki, are selected for tuning

Click Plot Current Response to display the drum pressure variations with the initial
controller.

Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing

RESPOMSE OPTIMIZATION

Design Variables Set: @ DesignVars = 7 Select EE FlotCurrent Response > gg
@ Options Optimize Close
Uncertain Variables Set: None = y4 ol Mews m Add Plot = P

=
e D= boilerpressure_demo/Drum pressure co... * | boilerpressure_demo/Drum pressure co... ®
Search warkspace wariables L~ boilerpressure_demo/Drum pressure constraint o x
w MATLAB Workspace
boilerpressure_demoiDrum pressure constraint
Narne Value
FH Bearmwidth 01745 -
E Cr_alpha <41x5 dou... -
HH cm_el -11.8029
Hcmg 17190 - E
w SIMULINK Workspace (boilerpressur...
MName Value B
Hcp 452 -
} HeatDistAmplitude 2560000
HH Kfout 33352
Hki 0.0028 - .
» SDOTOOL Workspace 4
= O RSSO N O SRS E PO OO OOt BOOP O TP PP S PR RS ETOOS TOOREROREEREETEE FERS J
1} 1000 2000 3000 4000 5000 G000 7000 B000
MName Value
sa DesignVars «2d para.. boilerpressure_demo/Drum pressure constraint(Reference Tracking) (i
boilerpressure_demaDrum pressure constraint(Reference Tracking)

1.06 - T T T ; " .
w Variable Preview : : : : : ;

A0 e EOP B e [(TP SRR 1

102 _ ... 4
o i
-]
£ 'R BIN NS | NN Ion S e LN RN T Y AT TSR | ERUERIE BN PRI R 4
5
0.95 _ 4
1T FSUPURUY SUUNU-SUDsPURUUUIURS-NUROUOY! IOUUIY . SUPUUIPOROTOUUUU SURUIUIPOPOPIUURS SORUOPIUIPOROPTOOr SOt 4 FNUURSI . SESRR 4
0.94 I R Borieieeeeened e [FURRTTTR [FURRRURR [FOT J
a 1000 2000 3000 4000 5000 G000 7000 B000

Configuring and Running the Optimization in the GUI Using Parallel Computing

When computing the model response with the initial controller, this complex model took
a long time to simulate. Using parallel computing can reduce the optimization time

by simulating the model in parallel. For more information on parallel computing and
optimization performance see the tutorial “'Improving Optimization Performance Using

"

Parallel Computing"”’.

To configure the optimization problem to use parallel computing click Options in the
SDOTOOL and select the Parallel Options tab. Select the "Use the parallel pool

3-247

3 Response Optimization

3-248

during optimization" option. This triggers an automated search for any model path
dependencies. In this example, the folder that contains the Boiler Library block is found
as a model path dependency, and is displayed in the Model path dependencies list box.

Response Optimization Options x

| General Optionsl Optimization Options| Parallel Opticns | Linearization Options|

Use the parallel pool during optimization

Model path dependencies

Ci/Users/msaginaw/AppData/Local/Temp/tpaceel6bi_52d2_49f1_9a33_decl3adefied

’ Add path dependency... l ’ Sync path dependencies from model

| ok || cancel || Help |

Note that the model path dependencies must be accessible by all the workers in the
MATLAB pool. In this example, we opened a local MATLAB pool, and all the workers
have access to the folder containing the Boiler Model library. You can also manually edit
the path dependency list, add paths using the folder browser, or rerun the automatic
dependency checker.

Clicking OK configures the optimization to use parallel computing.

To run the optimization click the Optimize button. A progress window opens displaying
optimization progress.

Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing

RESPOMSE OPTIMIZATION

Design Variables Set: e DesignVars - / @ Select E PlotCurrent Response IE 2@
@ Options
Optimize Close
Uncertain Variables Set: [Nane = S lnew v [add Pot - 2
- =
w0 boilerpressure_demo/Drum pressure co... * | boilerpressure_demo/Drum pressure co... % | Optimization Progress %
Search workspace variables £~ ['boilerpressure_demo/Drum pressure constraint O x | Optimization Progress
w MATLAB Workspace
I Iter | F-count i max
boilerpressure_demaDrum pressure constral -7 0
Name Value Iy constraint
) PressureLimits <12 sdo.r... B 0 1 17.7883 1.4434e-04
) PressureRegulation <1 sdo.r.. 104s] 1 2 165488 0002
H ans 6.0555e-06 . z 3 16.2775 -9.3969e-05
bnds <1 cell - 3 4 86635 5.5511e-17
4 5 5.5440 -5.5511e-17
w SIMULINK Workspace (boilerpressure_de... =_ G e]
Name Value 6 7 0.3856 -0.0400
T 21 0.3856 -0.0400
Hcp 452 -
[H HeatDistAmplitude 2560000
EH kfout 33352
FH i 00033 2
w SDOTOOL Workspace
Name Value
Q DesignVars <2x1 para...
w Variable Preview
Configuring parallel warkers for optimization. -
Parallel workers configured for optimization
Optimization started 12-May-2011 08:23:59 =
Remaving dats from parallel workers
Data removed from parallel workers.
Optimization converged, 12-May-2011 08:28:58
Optimized variable values written to ‘DesignVars' in SDOTOOL workspace
: boilerpressure_demc’ updsted with optimized values
0 1000 2000 3000 4000 5000 6000 7000 BOOD Optimizstion soher cutput il

The final response shows that the optimized regulator tracks the reference pressure
much more closely.

Configuring and Running the Optimization at the Command Line

You can also use the command line functions to configure the optimization to use parallel
computing and run the optimization.

Select the model variables for optimization and set lower limits

p = sdo.getParameterFromModel ("boilerpressure_demo”,{"Kp", "Ki"});
p(1) -Minimum 0.001;
p(2) -Minimum 0.001;

3-249

3 Response Optimization

Select the model signal to bound and create a simulator to simulate the model.

nPressure = Simulink.SimulationData.SignalLogginginfo;
nPressure.BlockPath "boilerpressure_demo/1//y0";
nPressure.OutputPortindex 1;
nPressure.Logginglnfo.NameMode 1;
nPressure.Logginglnfo.LoggingName "nPressure”;

simulator = sdo.SimulationTest("boilerpressure_demo”);
simulator.LoggingInfo.Signals = nPressure;

Get the optimization requirements defined by the check blocks in the model so that we
can use them in the optimization problem.

bnds = getbounds("boilerpressure_demo/Drum pressure constraint®);
PressureLimits = [bnds{:}]1;
bnds = getbounds("boilerpressure_demo/Drum pressure constraint(Reference Tracking)®);
PressureRegulation = [bnds{:}1;
requirements = struct(...
"PressureLimits”, PressureLimits, ...
"PressureRegulation”, PressureRegulation);

Define the function called during optimization. Notice that the function uses the
simulator and requirements defined earlier to evaluate the design.

evalDesign = @(p) boilerpressure_design(p,simulator,requirements);
type boilerpressure_design

function design = boilerpressure_design(p,simulator,requirements)

%BO I LERPRESSURE_DESIGN

%

% The boilerpressure_design function is used to evaluate a boiler

% controller design design.

%

% The |p] input argument is the vector of controller parameters.

%

% The |simulator| input argument is a sdo.SimulinkTest object used to

% simulate the |boilerpressure_demo| model and log simulation signals.

%

% The |requirements| input argument contains the design requirements used
% to evaluate the boiler controller design.

%

% The |design| return argument contains information about the design

% evaluation that can be used by the |sdo.optimize| function to optimize

3-250

Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing

% the design.
%
% see also sdo.optimize, sdoExampleCostFunction

% Copyright 2011 The MathWorks, Inc.

%% Simulate the model

%

% Use the simulator input argument to simulate the model and log model

% signals.

%

% First ensure that we simulate the model with the parameter values chosen
% by the optimizer.

%

simulator_Parameters = p;

%%

% Simulate the model and log signals.

%

simulator = sim(simulator);

%%

% Get the simulation signal log, the simulation log name is defined by the
% model |SignallLoggingName| property

%

logName = get_param("boilerpressure_demo®, "SignalLoggingName®);

simLog = get(simulator.LoggedData, logName) ;

%% Evaluate the design requirements

%

% Use the requirements input argument to evaluate the design requirements

%

% Check the Pressure signal against the |PressureLimits]| requirements.

%

nPressure = get(simLog, "nPressure®);

c=1[---
evalRequirement(requirements.PressureLimits(l),nPressure.Values); ...
evalRequirement(requirements.PressureLimits(2),nPressure.Values)];

%%

% Use the PressurelLimits requirements as non-linear constraints for

% optimization.

design.Cleq = c(:);

%%

% Check the pressure signal against the |PressureRegulation| requirement.

%

T = evalRequirement(requirements._PressureRegulation,nPressure._Values);

3-251

3 Response Optimization

%%

% Use the PressureRegulation requirement as an objective for optimization.
design.F = f;

end

Setup optimization options to use the parallel pool and specify the model and model
dependencies used during optimization.

opt = sdo.OptimizeOptions;
opt.UseParallel
opt.OptimizedModel
opt.ParallelPathDependencies

"always”;
"boilerpressure_demo”;
sdo.getModelDependencies("boilerpressure_demo®);

Warning: the following problems were found during MATLAB code analysis:
<a href="matlab:dependencies.openref("BlockCallback,OpenFcn*, "boilerpressure_demo/Clicl
First argument to "evalin” is not a literal string

Run the optimization
[pOpt,info] = sdo.optimize(evalDesign,p,opt);

Configuring parallel workers for optimization...
Parallel workers configured for optimization.

Optimization started 31-May-2013 11:13:52

max Step-size First-order
Iter F-count) constraint optimality
0 1 17.5068 0
1 2 11.6563 0 1.25 32.2
2 3 8.32632 0 1.27 17.4
3 4 0.694611 0 70.1 0.0391
4 5 0.562489 0 4.3 0.0355
5 7 0.543708 0 2.79 0.0316
6 12 0.543708 0 0.0515 0.0316

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the selected value of the step size tolerance and constraints are
satisfied to within the selected value of the constraint tolerance.
Removing data from parallel workers. ..

Data removed from parallel workers.

Closing the Model

3-252

Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing

After the model is optimized, we remove the boiler model and library file from the
temporary folder.

rmpath(pathToLib)
boilerpressure_cleanup(pathToLib)
bdclose("boilerpressure_demo®)

Sending a stop signal to all the workers ... stopped.

3-253

3-254

Sensitivity Analysis

“What Is Sensitivity Analysis?” on page 4-2

“Sampling Parameters for Sensitivity Analysis” on page 4-4
“Sensitivity Analysis Methods” on page 4-11

“Perform Sensitivity Analysis Using Parallel Computing” on page 4-14
“Design Exploration using Parameter Sampling (Code)” on page 4-17

“Identify Key Parameters for Estimation (Code)” on page 4-32

4 Sensitivity Analysis

What Is Sensitivity Analysis?

Generally, sensitivity analysis is defined as the study of how uncertainty in the output
of a model can be attributed to different sources of uncertainty in the model input[1]. In
the context of using Simulink Design Optimization software, sensitivity analysis refers
to understanding how the parameters and states (optimization design variables) of a
Simulink model influence the optimization cost function. Examples of using sensitivity
analysis include:

+ Before optimization — Determine the influence of the parameters of a Simulink
model on the output. Use sensitivity analysis to rank parameters in order of influence
so that you can determine the most influential parameters. Optimize the model by
tuning the most influential parameters or perform experiments to better characterize
those parameters.

+ After optimization — Test how robust the cost function is to small changes in the
values of optimized parameters.

One approach to sensitivity analysis is local sensitivity analysis, which is derivative
based (numerical or analytical). Mathematically, the sensitivity of the cost function with
respect to certain parameters is equal to the partial derivative of the cost function with
respect to those parameters. The term local refers to the fact that all derivatives are
taken at a single point. For simple cost functions, this approach is efficient. However,
this approach can be infeasible for complex models, where formulating the cost function
(or the partial derivatives) is nontrivial. For example, models with discontinuities do not
always have derivatives.

Local sensitivity analysis is a one-at-a-time (OAT) technique. OAT techniques analyze
the effect of one parameter on the cost function at a time, keeping the other parameters
fixed. They explore only a small fraction of the design space, especially when there are
many parameters. Also, they do not provide insight about how the interactions between
parameters influence the cost function.

Another approach to sensitivity analysis is global sensitivity analysis, often implemented
using Monte Carlo techniques. This approach uses a representative (global) set of
samples to explore the design space. Use Simulink Design Optimization software to
perform global sensitivity analysis. The workflow is as follows:

1 Sample the model parameters using experimental design principles. That is, for each
parameter, generate multiple values that the parameter can assume. Define the
parameter sample space by specifying probability distributions for each parameter.
You can also specify parameter correlations.

What Is Sensitivity Analysis?

For information about sampling parameters, see “Sampling Parameters for
Sensitivity Analysis” on page 4-4.

2 Evaluate the optimization cost function at each sample point. You can plot the cost
function output for the samples to visually analyze trends.

3 (Optional) Formally analyze the relation between the cost function and the samples.
Analysis methods include correlation, partial correlation (requires a Statistics
Toolbox™ license), and standardized regression. You can configure each analysis
method to use either raw or ranked data.

For information about the analysis methods, see “Sensitivity Analysis Methods” on

page 4-11.

References

[1] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana,
M., and Tarantola, S. Global Sensitivity Analysis. The Primer, John Wiley and
Sons, 2008.

See Also

sdo.analyze | sdo.evaluate | sdo.sample | sdo.scatterPlot

Related Examples
. “Design Exploration using Parameter Sampling (Code)” on page 4-17

. “Identify Key Parameters for Estimation (Code)” on page 4-32

More About

. “Sensitivity Analysis Methods” on page 4-11

. “Sampling Parameters for Sensitivity Analysis” on page 4-4

4-3

4 Sensitivity Analysis

Sampling Parameters for Sensitivity Analysis

You can perform global sensitivity analysis using Simulink Design Optimization
software. You vary the value of the Simulink model parameters and states of interest

in a specific range. These parameters and states are the optimization design variables,
collectively referred to as parameters. Each combination of values for the different
parameters is referred to as a sample or sample point. A collection of samples is referred
to as a design space, parameter sample space, or, simply, sample space. You evaluate

the optimization cost function for each point in the sample space. Then, you analyze the
relation between the parameter value variations and the cost function value variations to
understand how the parameters influence the cost function.

Each model evaluation has a computational expense and can be time intensive.
Therefore, ideally, you want to use the smallest sample set that yields useful results. You
can use techniques such as design of experiments (DOE) (also referred to as experimental
design) to choose an efficient sample set for sensitivity analysis.

Use sdo.ParameterSpace to define the parameter space. This object specifies the
probability distributions and correlations for the parameters. Use this object as an input
to sdo.sample to generate samples from the specified parameter space.

Common considerations for parameter sampling include:

* “Probability Distribution” on page 4-4
* “Bounds” on page 4-5

+ “Number of Samples” on page 4-5

+ “Method of Sampling” on page 4-5

+ “Custom Sample Sets” on page 4-7

Probability Distribution

Specify the probability distribution function that is best suited for each parameter.
Use your knowledge of the system (empirical or theoretical) to choose the probability
distribution for the parameter.

The Simulink Design Optimization software allows you to specify uniform (default) and
normal distributions. If you have a Statistics Toolbox license, you can also specify any
univariate probability distribution that the toolbox provides.

Sampling Parameters for Sensitivity Analysis

Specify the probability distribution of a parameter using the ParameterDistributions
property of an sdo.ParameterSpace object.

Bounds

Specify the upper and lower bounds of the value of a parameter. These bounds define the
sampling range for the parameter. Use your knowledge of the parameter’s range of likely
values to choose the bounds.

To specify the bounds of a parameter, use the Minimum and Maximum properties of a
param.Continuous object. Use this updated param.Continuous object when you
specify the parameter space using an sdo.ParameterSpace object.

Number of Samples

Ideally, you want to use the smallest number of samples that yield useful results,
because each sample requires a model evaluation.

As the number of parameters increases, the number of samples needed to explore the
design space generally increases. For correlation or regression analysis, consider using
10Np samples, where Np 1s the number of parameters.

Specify the number of samples as the second input argument of sdo.sample.

Method of Sampling

After specifying the probability distributions and bounds for the parameters, you
generate samples for the specified parameter space. You can specify the method used to
generate these samples using the Method property of an sdo.SampleOptions object.
Use this object as an input to sdo.sample to specify the sampling options. Specify the
sampling method as one of the following:

* "random®™ — Random samples drawn from the probability distributions specified for
the parameters.

Suppose you specified a value for the RankCorrelation property of the
sdo.ParameterSpace object that you use for sampling. The software uses the Iman-
Conover method to impose the parameter correlations.

4 Sensitivity Analysis

4-6

"lhs® — Latin hypercube samples drawn from the probability distributions specified
for the parameters. Use this option for a more systematic space-filling approach

than random sampling. The following figure shows the difference between random
sampling and Latin hybercube design-based sampling.

Randorn Latin Hypercube
T Towel [T T o
5 : ? o :
o7k : ©o L] OF5} i M e
: : : o : : :
0.5 E | 0.5 °
e i 5 | § i o
: : : L O :
|:|25 |:|25 ,
o ‘o : O : :
: : : : : ol
a . : i 0 ;) ;
a 025 05 075 1 a 025 05 075 1

The figure shows 8 samples for 2 parameters, drawn from a uniform distribution, in
the interval from 0 to 1. Random sampling can result in the clustering of samples (see
the top right-hand corner of the plot). Latin hypercube designs, with their stratified
approach to sampling, are better able to avoid such clustering.

Suppose you specified a value for the RankCorrelation property of the
sdo.ParameterSpace object that you use for sampling. The software uses the Iman-
Conover method to impose the parameter correlations.

This method requires a Statistics Toolbox license.

"copula® — Random samples drawn from a copula. Use this option to impose
correlations between the parameters.

You can use either a Gaussian copula (default) or a t copula. Specify the choice of
copula using the MethodOptions property of the sdo.SampleOptions object.
Use t copulas when the probability of extreme parameter values is not negligible.
You must specify the degrees of freedom for a t copula. As you increase the degrees
of freedom, the t copula converges to the Gaussian copula, and the probability of

Sampling Parameters for Sensitivity Analysis

extreme parameter values becomes negligible. The following figure shows 1000
samples drawn for 2 parameters, in the interval from 0 to 1, using the Gaussian and t
copulas.

Gaussian Copula t Copula (Degrees of Freedom = 3)
r . g 1 T . .

In comparison to the Gaussian copula, the t copula has more samples that represent
the extreme values of the parameters.

You can specify the correlation type as either Spearman’s rank correlation or
Kendall’s rank correlation.

For the "copula® method, you must also specify the value of the RankCorrelation
property of the sdo.ParameterSpace object that you use for sampling.

This method requires a Statistics Toolbox license.

Custom Sample Sets

You can specify a custom sample set. For example, suppose you want to generate a 1000
samples of the model parameter, R, which is a resistor.

R = param.Continuous("R",10);

4 Sensitivity Analysis

Sample R in the 5% range of its nominal value. However, resistors of 1% tolerance are
removed. So, you do not need to sample R in the 1% range. You can use the following
approaches:

+ “Specify Customized Probability Distribution” on page 4-8
* “Create Table of Custom Samples” on page 4-9

To visualize the samples and validate the sample space, use sdo.scatterPlot.
Specify Customized Probability Distribution

Use a customized probability distribution to configure the parameter space and generate
samples.

You can use tools provided by the Statistics Toolbox software to create customized
probability distributions. For example,

X
F

[0.95 0.99 1.01 1.05]*R.Value;
[0 0.5 0.5 1];

pdR = makedist("PiecewiselLinear”,"x",x,"Fx",F);

X = linspace(.9*R.Value, 1.1*R_.Value, 1e3);
plot(x, pdf(pdR, x));

Sampling Parameters for Sensitivity Analysis

08 -

0.4

0.2¢ .

D 1 1 1 1 1 1 1 1 1
a 92 94 898 98 m 102 104 106 108 N

The call to makedist specifies a piecewise linear distribution for the resistor value, with
a “hole” in the 1% range.

Specify pdR as the probability distribution for the R parameter when you create the
sdo.ParameterSpace object to define the parameter space.

ps = sdo.ParameterSpace(R,pdR);
Generate the samples using sdo.sample.
X = sdo.sample(ps,1000);

Create Table of Custom Samples

Create a table of the custom samples. Specify one column for each parameter, and one
row for each sample. The column name must be the same as the parameter name.

For example:

Rval = R.Value;

4 Sensitivity Analysis

Ns = 1000;
x = table([linspace(-95*Rval, .99*Rval ,Ns*_.5) linspace(1.01*Rval,1.05*Rval ,Ns*_.5)]", "Val

Consider another example, where you have two model parameters, A and B.

A
B

= param.Continuous("A",1);

= param.Continuous("B",10);

Vary A for the following values: 2,3,4. Vary B for the following values: 20,30,40. Generate
a table of samples for every combination of A and B.

Avals [2 3 4];

Bvals [20 30 40];

[Agrid,Bgrid] = meshgrid(Avals,Bvals);

x = table(Agrid(:),Bgrid(:), "VariableNames",{"A","B"});

See Also

sdo.SampleOptions | sdo.sample

Related Examples

. “Design Exploration using Parameter Sampling (Code)” on page 4-17

More About
. “What Is Sensitivity Analysis?” on page 4-2

4-10

Sensitivity Analysis Methods

Sensitivity Analysis Methods

To analyze how the parameters and states (collectively referred to as parameters) of a
Simulink model influence the cost function, first generate samples of the parameters.
Then, evaluate the cost function for each sample. Finally, analyze the relationship
between the parameter variations and the cost function values. Perform this analysis in
the following ways:

* “Visual Analysis” on page 4-11

+ “Quantitative Analysis” on page 4-11

Visual Analysis

Plot the cost function evaluations against the parameter samples to identify trends. This
method is informal and provides visual intuition about how the various parameters affect
the cost function.

You can use tools such as:

+ sdo.scatterPlot — Scatter plot of the parameter samples against the cost function
evaluation

+ surf, mesh — 3-D plot of samples of two parameters against the cost function
evaluation

Quantitative Analysis

Obtain summary statistics using sdo.analyze. This function performs linear
correlation analysis by default. You can specify other analysis method(s) using an
sdo.AnalyzeOptions options object.

Available analysis methods include:

Method Name Description

Correlation Use to analyze how a model parameter and
the cost function are correlated

Partial correlation (requires a Statistics Use to analyze how a model parameter and

Toolbox license) the cost function are correlated, removing

the effects of the remaining parameters

4-11

4 Sensitivity Analysis

4-12

Method Name Description

Standardized regression Use when you expect that the model

parameters linearly influence the cost
function

For information about the formulations of these methods, see sdo.AnalyzeOptions.

Linear vs. Ranked Analysis

Each of these methods supports the following analysis types:

Linear analysis, also referred to as Pearson analysis — Uses raw data for analysis.

Best suited when you expect a linear relation between the parameters and cost
function.

Ranked analysis, also referred to as Spearman analysis and ranked transformation —
Uses ranks of data for analysis. Best suited when you expect a nonlinear monotonic
relation between the parameters and the cost function.

For an example of ranked analysis, suppose you had the following data set:

| X2 Y

9 20 340
60 106

2.3 50.4 870.5

Here x; and x, are model parameters, and y is the cost function. Each row represents
a sample and the associated cost function evaluation.

The data is ranked on a per column basis. For example, when you rank the data in
column 1 (x;), which contains the entries 9, 5, and 2.3, the ranked data 1s equal to 3, 2,
and 1. The ranked data set for the samples of x;, xs and y are as follows:

X X2

W~ N

Sensitivity Analysis Methods

The ranked data set can be used for correlation, partial correlation, or standardized
regression analysis.

Linear analysis retains information about intervals between data values, whereas
ranked analysis does not.

See Also

sdo.AnalyzeOptions | sdo.analyze | sdo.evaluate | sdo.sample

Related Examples
. “Identify Key Parameters for Estimation (Code)” on page 4-32

More About

. “What Is Sensitivity Analysis?” on page 4-2

4-13

4 Sensitivity Analysis

Perform Sensitivity Analysis Using Parallel Computing

4-14

In this section...

“Configure Your System for Parallel Computing” on page 4-14
“Model Dependencies” on page 4-14
“Perform Sensitivity Analysis Using Parallel Computing” on page 4-15

Configure Your System for Parallel Computing

To perform global sensitivity analysis, you sample the model parameters and states
(collectively referred to as parameters), and evaluate the cost function for each sample.
You use sdo.evaluate to perform the cost function evaluation (also referred to as model
evaluation). Evaluating the model for a large number of samples can be time consuming.
You can speed up the performance of sdo.evaluate using parallel computing on
multicore processors or multiprocessor networks. When you call sdo.evaluate with the
parallel computing option enabled, the software uses the available parallel pool. If no
parallel pool is available and Automatically create a parallel pool is selected in your
Parallel Computing Toolbox preferences, then the software starts a parallel pool using
the settings in those preferences.

To ensure that the parallel workers are able to access the file and path dependencies,
create a cluster profile that specifies the same. The parallel pool used to evaluate the
model must be associated with this cluster profile. For information regarding creating
a cluster profile, see “Create and Modify Cluster Profiles” in the Parallel Computing
Toolbox documentation.

To manually open a parallel pool that uses a specific cluster profile, use:
parpool (MyProfile);

MyProfile is the name of a cluster profile.

Model Dependencies

Model dependencies are any referenced models, data (model variables etc.), S-
functions, or additional files necessary to run the model. Before starting the parallel
model evaluation, you must verify that all the remote workers can access the model
dependencies. Otherwise, you may get unexpected results.

Perform Sensitivity Analysis Using Parallel Computing

Making File Dependencies Accessible to Remote Workers

When you use parallel computing, the Simulink Design Optimization software helps you
identify model path dependencies. To do so, the software uses the Simulink Manifest
Tools. However, the manifest tools may not find all the files required by your model. For
example, folders containing code for your model or block callbacks may not be detected.
To learn more, see “Scope of Dependency Analysis” in the Simulink documentation.

+ If your model has undetected file dependencies, then specify them in the Files and
Folders section of the cluster profile.

+ If your model has path dependencies that are undetected or inaccessible by the remote
workers, then add them to the list of model path dependencies. For more information,
see “Perform Sensitivity Analysis Using Parallel Computing” on page 4-15.

Making Data Dependencies Accessible to Remote Workers

You can check whether a model has access to all its data dependencies, such as variables
required for model initialization. On your local machine, complete the following steps:
Close the model, and clear the MATLAB workspace.

2 Load the model. Verify that only the specified dependencies are accessible to the
model.

3 Simulate the model. If the model errors, a dependency is missing. For example, if a
simulation error occurs because a variable is not defined, you can correct the problem
in one of the following ways:

Add the variable to the model workspace.
Create a MATLAB script that creates the variable, and add the file to the list of

dependencies. Modify the PreLoadFcn callback of the model to add a call to the
MATLAB script.
Perform Sensitivity Analysis Using Parallel Computing

To evaluate a model using parallel computing:

1 Ensure that the software can access parallel pool workers that use the appropriate
cluster profile.

For more information, see “Configure Your System for Parallel Computing” on page
4-14.

4-15

4 Sensitivity Analysis

4-16

2 Open the model.
3 Specify the cost function and generate parameter samples for sensitivity analysis.
4 Enable parallel computing using an evaluation option set, opt.
opt = sdo.EvaluateOptions;
opt.UseParallel = "always”;
5 Find the model path dependencies.
dirs = sdo.getModelDependencies(modelname)
Note: sdo.getModelDependencies may not detect all the path dependencies in
your model.
For more information, see “Model Dependencies” on page 4-14.
6 (Optional) Modify dirs to include the path dependencies that
sdo.getModelDependencies does not detect.
dirs = vertcat(dirs, "\\hostname\C$\matlab\work™)
7 (Optional) Modify dirs to make paths on local drives accessible to remote workers.
dirs = regexprep(dirs, "C:/", "\\\\hostname\\C$\\ ")
8 Add the path dependencies for evaluation.
opt.ParallelPathDependencies = dirs;
9 Specify the name of the model to be evaluated in parallel.
opt._ModelName = modelname;
10 Evaluate the model.
[pOpt,opt_info] = sdo.evaluate(fcn,samples,opt);
See Also

sdo.EvaluateOptions | parpool | sdo.evaluate | sdo.getModelDependencies

Design Exploration using Parameter Sampling (Code)

Design Exploration using Parameter Sampling (Code)

This example shows how to sample and explore a design space. You explore the design
of a Continuously Stirred Tank Reactor to minimize product concentration variation and
production cost. The design includes feed stock uncertainty.

You explore the CSTR design by characterizing design parameters using probability
distributions. You use the distributions to generate random samples in the design space
and perform Monte-Carlo evaluation of the design at these sample points. You then
create plots to visualize the design space and select the best design. You can then use the
best design as an initial guess for optimization of the design.

You can also use the sampled design space and Monte-Carlo evaluation output to analyze
the influence of design parameters on the design, see "Sensitivity Analysis for Parameter
Estimation (Code)"

Continuously Stirred Tank Reactor (CSTR) Model

Continuously Stirred Tank Reactors (CSTRs) are common in the process industry. The
Simulink model, sdoCSTR, models a jacketed diabatic (i.e., non-adiabatic) tank reactor
described in [1]. The CSTR is assumed to be perfectly mixed, with a single first-order
exothermic and irreversible reaction, A —+ [3. 4, the reactant, is converted to 2, the
product.

In this example, you use the following two-state CSTR model, which uses basic
accounting and energy conservation principles:

flr{-.!_l lF-.1 .) 1
dt A ,.,.h{'ffw-' Ca)=r=*xCy
dt Ax 'rrl: ;II " . } vl"l.,lr}I Cp * [* Frl: ! f.-.-..n'}
r=ko*e¢ r
. f”_t, and Creed - Concentrations of A in the CSTR and in the feed [kgmol/m~* 3]

T, TJ’“'", and Tel - CSTR, feed, and coolant temperatures [K]

+ I and - Volumetric flow rate [m”3/h] and the density of the material in the CSTR
[1/m~3]

4-17

4 Sensitivity Analysis

* frand A - Height [m] and heated cross-sectional area [m”2] of the CSTR.
ko - Pre-exponential non-thermal factor for reaction A —+ 3 [1/h]
* FE and H - Activation energy and heat of reaction for -4 —+ I [kcal/kgmol]
* I - Boltzmann's gas constant [kcal/(kgmol * K)]
* “pand ' - Heat capacity [kcal/K] and heat transfer coefficients [kcal/(m”2 * K * h)]

Open the Simulink model.

open_system("sdoCSTR");

r

FeadCond CA
Initial G onditions T >

Reactor Temperature
FeedTempO Ti

i

| Reactar Temp. C - I:'
»
Concentrationd Con:. Setpoint Coolant Temp. (T
¥ Residual Cone. Residual Concentration
Controller CSTR
|§|
Coolant

Copyright 2012 The MathWodks, Inc.

CSTR Design Problem

Assume that the CSTR is cylindrical, with the coolant applied to the base of the cylinder.
Tune the CSTR cross-sectional area, 4, and CSTR height, /&, to meet the following design
goals:

Minimize the variation in residual concentration, C'4. Variations in the residual
concentration negatively affect the quality of the CSTR product. Minimizing the
variations also improves CSTR profit.

4-18

Design Exploration using Parameter Sampling (Code)

Minimize the mean coolant temperature Teoot. Heating or cooling the jacket coolant
temperature is expensive. Minimizing the mean coolant temperature improves CSTR
profit.

The design must allow for variations in the quality of supply feed concentration, Cree o

and feed temperature, Tjeet, The CSTR is fed with feed from different suppliers. The
quality of the feed differs from supplier to supplier and also varies within each supply
batch.

Specify Design Variables

Select the following model parameters as design variables:
* Cylinder cross-sectional area A

* Cylinder height i

p = sdo.getParameterFromModel ("sdoCSTR",{"A","h"});

Limit the cross-sectional area to a range of [0.2 2] m”2.

p(1) -Minimum
p(1) -Maximum

0.2;
2;

Limit the height to a range of [0.5 3] m.

p(2) -Minimum
p(2) -Maximum

= 0.5;
= 3;

Sample the Design Space

Create a parameter space for the design variables. The parameter space characterizes
the allowable parameter values and combinations of parameter values.

pSpace = sdo.ParameterSpace(p);

The parameter space uses default uniform distributions for the design variables. The
distribution lower and upper bounds are set to the design variable minimum and
maximum value respectively.

Use the sdo.sample function to generate samples from the parameter space. You use
the samples to evaluate the model and explore the design space.

rng default; % For reproducibility

4-19

4 Sensitivity Analysis

pSmpl = sdo.sample(pSpace,30);

Use the sdo.scatterPlot command to visualize the sampled parameter space. The
scatter plot shows the parameter distributions on the diagonal subplots and pairwise
parameter combinations on the off diagonal subplots.

figure, sdo.scatterPlot(pSmpl)

15 . . .

0.5 .. .y

25 . .
. []
1.5 . s

0.5 &eo

Specify Uncertain Variables

Select the feed concentration and feed temperature as uncertain variables. You evaluate
the design using different values of feed temperature and concentration.

punc = sdo.getParameterFromModel ("sdoCSTR",{"FeedCon0", "FeedTemp0~});

4-20

Design Exploration using Parameter Sampling (Code)

Create a parameter space for the uncertain variables. Use normal distributions for both
variables. Specify the mean as the current parameter value. Specify a variance of 5% of
the mean for the feed concentration and 1% of the mean for the temperature.

uSpace = sdo.ParameterSpace(punc);
uSpace = setDistribution(uSpace, "FeedCon0" ,makedist("normal”,pUnc(l).Value,0.05*pUnc(1
uSpace = setDistribution(uSpace, "FeedTemp0® ,makedist("normal”,pUnc(2).-Value,0.01*pUnc(:

The feed concentration is inversely correlated with the feed temperature. Add this
information to the parameter space.

uSpace .RankCorrelation = [1 -0.6; -0.6 1];

The rank correlation matrix has a row and column for each parameter with the (1,)) entry
specifying the correlation between the i and j parameters.

Sample the parameter space. The scatter plot shows the correlation between
concentration and temperature.

uSmpl = sdo.sample(uSpace,60);
sdo.scatterPlot(uSmpl)

4-21

4 Sensitivity Analysis

11.5
11 *
10.5
10
9.5

FeedCon0

FeedTempl
[
&
]

8 9 10 1 12 285 290 295 300 305
FeedCon0 FeedTempl

Ideally you want to evaluate the design for every combination of points in the design and
uncertain spaces, which implies 30%60 = 1800 simulations. Each simulation takes around
0.5 sec. You can use parallel computing to speed up the evaluation. For this example

you instead only use the samples that have maximum & minimum concentration and
temperature values, reducing the evaluation time to around 1 min.

[~,iminC] = min(uSmpl.FeedCon0);
[~,imaxC] = max(uSmpl.FeedCon0);
[~,iminT] = min(uSmpl.FeedTemp0);
[~,imaxT] = max(uSmpl .FeedTempO);

uSmpl = uSmpl(unique([iminC, imaxC, iminT, imaxT]) ,:)

uSmpl =

4-22

Design Exploration using Parameter Sampling (Code)

FeedConO FeedTempO

9.4555 303.58
11.175 288.13
11.293 290.73
8.9308 294.16

Create Evaluation Function

Create a function that evaluates the design for a given sample point in the design space.
The design is evaluated on how well it minimizes the variation in residual concentration
and mean coolant temperature.

Specify Design Requirements

Evaluating a point in the design space requires logging model signals. Logged signals are
used to evaluate the design requirements.

Log the following signals:
* CSTR concentration, available at the second output port of the sdoCSTR/CSTR block

Conc = Simulink.SimulationData.SignalLogginglnfo;
Conc.BlockPath *sdoCSTR/CSTR" ;
Conc.OutputPortindex 2;
Conc.LoggingInfo.NameMode 1;
Conc.LoggingInfo.LoggingName "Concentration”;

+ Coolant temperature, available at the first output of the sdoCSTR/Controller block

Coolant = Simulink.SimulationData.SignallLogginglinfo;
Coolant.BlockPath *sdoCSTR/Controller”®;
Coolant.OutputPortlindex 1;
Coolant.LogginglInfo.NameMode 1;
Coolant.LogginglInfo.LoggingName "Coolant”;

Create and configure a simulation test object to log the required signals.

simulator = sdo.SimulationTest("sdoCSTR");
simulator.Logginglnfo.Signals = [Conc,Coolant];

Evaluation Function

4-23

4 Sensitivity Analysis

Use an anonymous function with one argument that calls the sdoCSTR_design function.
evalDesign = @(p) sdoCSTR_design(p,simulator,pUnc,uSmpl);

The evalDesign function:

* Has one input argument that specifies the CSTR dimensions

* Returns the optimization objective value

The sdoCSTR_design function uses a for loop that iterates through the sample values
specified for the feed concentration and temperature. Within the loop, the function:

+ Simulates the model using the current design point, feed concentration, and feed
temperature values

+ Calculates the residual concentration variation and coolant temperature costs

To view the objective function, type edit sdoCSTR_design.

type sdoCSTR_design

function design = sdoCSTR_design(p,simulator,pUnc,smpluUnc)
%SDOCSTR_DESIGN

%

% The sdoCSTR_design function is used to evaluate a CSTR design.

%

% The |p] input argument is the vector of CSTR dimensions.

%

% The |simulator| input argument is a sdo.SimulinkTest object used to

% simulate the |sdoCSTR| model and log simulation signals.

%

% The |pUnc] input argument is a vector of parameters to specify the CSTR
% input feed concentration and feed temperature. The |smplUnc] argument is
% a table of different feed concentration and temperature values.

%

% The |design| return argument contains information about the design

% evaluation that can be used by the |sdo.optimize| function to optimize
% the design.

%

% see also sdo.optimize, sdoExampleCostFunction

%

% Copyright 2012-2013 The MathWorks, Inc.

4-24

Design Exploration using Parameter Sampling (Code)

%% Model Simulations and Evaluations
%
% For each value in |smplUnc], configure and simulate the model. Use
% the logged concentration and coolant signals to compute the design cost.
%
costConc = 0;
costCoolant = 0O;
for ct=1:size(smplUnc,1)
%Set the feed concentration and temperature values
pUnc(l) .Value = smplUnc{ct,1};
punc(2) .Value = smplUnc{ct,2};

%Simulate model

simulator._Parameters = [p; puUnc];

simulator = sim(simulator);

logName = get_param("sdoCSTR", "SignalLoggingName*) ;
simLog = get(simulator.LoggedData, logName) ;

%Compute Concentration cost based on the standard deviation of the
%concentration from a nominal value.

Sig = find(simLog, "Concentration®);

costConc = costConc+10*std(Sig-Values-2);

%Compute coolant cost based on the mean deviation from room

%temperature.

Sig = find(simLog, "Coolant™®);

costCoolant = costCoolant+abs(mean(Sig.-Values - 294))/30;
end

%% Return Total Cost

%

% Compute the total cost as a sum of the concentration and coolant costs.
%

design.F = costConc + costCoolant;

%%
% Add the individual cost terms to the return argument. These are not used
% by the optimizer, but included for convenience.

design.costConc = costConc;
design.costCoolant = costCoolant;
end

Evaluate

4-25

4 Sensitivity Analysis

Use the sdo.evaluate command to evaluate the model at the sample design points.
y = sdo.evaluate(evalDesign,p,pSmpl);

Model evaluated at 30 samples.

View the results of the evaluation using a scatter plot. The scatter plot shows pairwise
plots for each design variable (A,h) and design cost. The plot include the total cost, F, as
well as coolant and concentration costs, costCoolant and costConc respectively.

sdo.scatterPlot(pSmpl,y);

30
. .
. * *]
20
L
10 o .y e -y e -
. o-.,. . " @ - ., ..
0 o Yool " reees F
20 . .
g 15 “e . :
[=]
g 10
] . .
8 5 L] -l .
0 e ...".I'“ e, L L R !
— 10
c_% [1] ., ™ ‘.. [1]
g 5 s p . ® -~ ., ™
[L] & ¥ " gh
roﬂ]] . (X]
U 0 ¢ o ‘.l"l. ¢ '-:-. ’
0 0.5 1 1.5 2 0.5 1 1.5 2 25 3
A h

The plot shows that larger cross-sectional areas result in lower total costs. However it is
difficult to tell how the height influences the total cost.

4-26

Design Exploration using Parameter Sampling (Code)

Create a mesh plot showing the total cost as a function of A and h.

Ftotal = scatteredInterpolant(pSmpl.A,pSmpl.h,y.F);
xR = linspace(min(pSmpl.A),max(pSmpl.A),60);

yR = linspace(min(pSmpl.h),max(pSmpl.h),60);
[xx,yy] = meshgrid(xR,yR);

zz = Ftotal(xx,yy);

mesh(xx,yy,zz)

view(56,30)

title("Total cost as function of A and h")

zlabel ("Ftotal ")

xlabel (p(1) -Name), ylabel(p(2).Name);

Total cost as function of A and h

40 .

Ftotal

The plot shows that high values of A and h result in lower costs. The best design in the
sampled space corresponds to the design with the lowest cost value.

4-27

4 Sensitivity Analysis

4-28

[~,idx] = min(y-F);
pBest = [y(idx,:), pSmpl(idx,:)]

pBest =
F costConc costCoolant A h
2.1052 1.5757 0.52953 1.8483 2.1158
Refine the Design Space

The total cost surface plot shows that low cost designs are designs with A in the range
[1.5 2] and h in the range [2 3]. Modify the parameter space distributions for A and h and
resample the design space to focus on this region.

pSpace = setDistribution(pSpace, "A" ,makedist("uniform”,1.5,2));
pSpace = setDistribution(pSpace,"h",makedist("uniform”,2,3));
pSmpl = sdo.sample(pSpace,30);

Add the pBest found earlier to the new samples so that it is part of the refined design
space.

pSmpl = [pSmpl;pBest(:,4:5)];
sdo.scatterPlot(pSmpl)

Design Exploration using Parameter Sampling (Code)

1.9
1.8
1.7
1.6
1.5

28
26
2.4
22

18 16 1.7v 18 189 2 2 22 24 286 28 3
A h

Evaluate using Refined Design Space
y = sdo.evaluate(evalDesign,p,pSmpl);

Model evaluated at 31 samples.

Create a mesh plot for this section of the design space. The surface indicates that better
designs are near the A = 1.9, h = 2.1 point.

Ftotal = scatteredInterpolant(pSmpl.A,pSmpl.h,y.F);
XR = linspace(min(pSmpl_.A),max(pSmpl.A),60);

yR = linspace(min(pSmpl.h),max(pSmpl_-h),60);
[xx,yy]l = meshgrid(xR,yR);

zz = Ftotal (xx,yy);

mesh(xx,yy,zz)

4-29

4 Sensitivity Analysis

(56,30)
title("Total cost as function of A and h%)

zlabel ("Ftotal)

view

xlabel (p(1) -Name), ylabel(p(2)-Name)

Total cost as function of A and h

0
i
oo

ara J.p_r_._Mr .
S
e
WA
il

b
)
o

%
o
o

[E101d

1.5
1.4

Find the best design from the new design space and compare with the best design point

found earlier.

L

[y(idx,:), pSmpl(idx,:)]11

-F

~,1dx] = min
= [pBest

pBest

pBest

costCoolant

costConc

4-30

Design Exploration using Parameter Sampling (Code)

2.1052 1.5757 0.52953 1.8483 2.1158
1.979 1.4838 0.49528 1.9695 2.1174

The best design in the refined design space is better than the design found earlier. This
indicates that there may be better designs in the same region and warrants refining the
design space further. Alternatively you can use the best design point as an initial guess
for optimization.

Related Examples

To learn how to optimize the CSTR design using the sdo.optimize command, see
“'Design Optimization with Uncertain Variables (Code)".

To learn how to analyze the influence of design parameters on the design using the
sdo.analyze command, see "Sensitivity Analysis for Parameter Estimation (Code)"

References

[1] Bequette, B.W. Process Dynamics: Modeling, Analysis and Simulation. 1st ed. Upper
Saddle River, NdJ: Prentice Hall, 1998.

Close the model

bdclose("sdoCSTR™)

4-31

4 Sensitivity Analysis

Identify Key Parameters for Estimation (Code)

4-32

This example shows how to use sensitivity analysis to narrow down the number of
parameters that you need to estimate to fit a model. This example uses a model of the
vestibulo-ocular reflex, which generates compensatory eye movements.

Model Description

The vestibulo-ocular reflex (VOR) enables the eyes to move at the same speed and in the
opposite direction as the head, so that vision is not blurred when the head moves during
normal activity. For example, if the head turns in one direction, the eyes turn in the
opposite direction, with the same speed. This happens even in the dark. In fact, the VOR
is most easily characterized by measurements in the dark, to ensure that eye movements
are predominantly driven by the VOR.

The file sdoVOR_Data.mat contains uniformly sampled data of stimulation and eye
movements. If the VOR were perfectly compensatory, then a plot of eye movement data,
when flipped vertically, would overlay exactly on top of a plot of head motion data. Such
a system would be described by a gain of 1 and a phase of 180 degrees. However, when
we plot the data in the file sdoVOR_Data.mat, the eye movements are close, but not
perfectly compensatory.

load sdoVOR_Data.mat; % Column vectors: Time HeadData EyeData
figure

plot(Time, HeadData, ":b-", Time, EyeData, "-g7)

xlabel ("Time (sec)")

ylabel ("Angular Velocity (deg/sec)®)

ylim([-110 110])

legend("Head Data®, "Eye Data®)

Identify Key Parameters for Estimation (Code)

"lDD - He_ad Da.ta =

.- :) Eye Data

wf | !

20+ § ! | -

Angular Velocity (deg/sec)
=

-100 } eI e : oI 1

Time (sec)

The eye movement data does not perfectly overlay the head motion data, and this can be
modeled by several factors. Head rotation is sensed by organs in the inner ears, known as
semicircular canals. These detect head motion and transmit signals about head motion

to the brain, which sends motor commands to the eye muscles, so that eye movements
compensate for head motion. We would like to use this eye movement data to estimate
the parameters in the models for these various stages. The model we will use is shown
below. There are four parameters in the model: Delay, Gain, Tc, and Tp.

model_name = "sdoVOR";
open_system(model_name)

4-33

4 Sensitivity Analysis

4-34

Vestibulo-Ocular Reflex

Te. 1
0y » = .
HesdMation Tost Tpst1 EyeMation

Delay
Periphery and Prolongation Cculomoctor Plant

Copyright 2013 The MathWeods, Inc

The Delay parameter models the fact that there is some delay in communicating the
signals from the inner ear to the brain and the eyes. This delay is due to the time needed
for chemical neurotransmitters to traverse the synaptic clefts between nerve cells. Based
on the number of synapses involved in the vestibulo-ocular reflex, this delay is expected
to be around 5 ms. For estimation purposes, we will assume it is between 2 and 9 ms.

Delay = sdo.getParameterFromModel (model_name, “Delay”);
Delay.Value = 0.005; % seconds

Delay.Minimum 0.002;

Delay.-Maximum = 0.009;

The Gain parameter models the fact that the the eyes do not move quite as much as the
head does. We will use 0.8 as our initial guess, and assume it is between 0.6 and 1.

Gain = sdo.getParameterFromModel (model_name, “Gain®);
Gain.Value = 0.8;

Gain.Minimum 0.6;

Gain.Maximum 1;

The Tc parameter models the dynamics associated with the semicircular canals, as well
as some additional neural processing. The canals are high-pass filters, because after a
subject has been put into rotational motion, the neurally active membranes in the canals
slowly relax back to resting position, so the canals stop sensing motion. Thus in the plot
above, after the stimulation undergoes transition edges, the eye movements tend to
depart from the stimulation over time. Based on mechanical characteristics of the canals,
combined with additional neural processing which prolongs this time constant to improve
the accuracy of the VOR, we will estimate the Tc parameter to be 15 seconds, and assume
it is between 10 and 30 seconds.

Identify Key Parameters for Estimation (Code)

Tc = sdo.getParameterFromModel (model_name, "Tc");
Tc.Value = 15;

Tc.Minimum = 10;

Tc.Maximum 30;

Finally, the Tp parameter models the dynamics of the oculomotor plant, i.e. the eye and
the muscles and tissues attached to it. The plant can be modeled by two poles, however
it is believed that the pole with the larger time constant is cancelled by precompensation
in the brain, to enable the eye to make quick movements. Thus in the plot, when the
stimulation undergoes transition edges, the eye movements follow with only a little
delay. For the Tp parameter, we will use 0.01 seconds as our initial guess, and assume it
is between 0.005 and 0.05 seconds.

Tp = sdo.getParameterFromModel (model_name, "Tp®);
Tp-Value = 0.01;

Tp-Minimum 0.005;
Tp-Maximum 0.05;

Collect these parameters into a vector.
v = [Delay Gain Tc Tp];
Compare Measured Data to Initial Simulated Output

Create an Experiment object. Specify HeadData as input.

Exp = sdo.Experiment(model_name);
Exp.InputData = timeseries(HeadData, Time);

Associate eye movement data with model output.

EyeMotion = Simulink.SimulationData.Signal;
EyeMotion.Name = "EyeMotion”;

EyeMotion.BlockPath = [model_name “/Oculomotor Plant"];
EyeMotion.PortType = “outport”;

EyeMotion_Portlndex = 1;
EyeMotion.Values = timeseries(EyeData, Time);

Add EyeMotion to the experiment.

Exp.OutputData = EyeMotion;

Use the data's timing characteristics in the model.

4-35

4 Sensitivity Analysis

stop_time = Time(end);

set_param(gcs, “StopTime®, num2str(stop_time));
dt = Time(2) - Time(1);

set_param(gcs, "FixedStep®, num2str(dt))

Create a simulation scenario using the experiment, and obtain the simulated output.

Exp = setEstimatedValues(Exp, V); % use vector of parameters/states
Simulator = createSimulator(Exp);
Simulator = sim(Simulator);

Search for the model_residual signal in the logged simulation data.

SimLog = find(Simulator.LoggedData,
get_param(model_name, "SignalLoggingName®));
EyeSignal = find(SimLog, “EyeMotion®);

The model output does not match the data very well, as shown by the residual, which we
can compute by calling the objective function.

estFcn = @(v) sdoVOR_Objective(v, Exp, "Residuals®);
Model _Error = estFcn(Vv);

plot(Time, EyeData, "-g*, ...

EyeSignal .Values.Time, EyeSignal .Values.Data,
Time, Model_Error.F, "-r");
xlabel ("Time (sec)");
ylabel ("Angular Velocity (deg/sec)”);
legend("Eye Data®, “Model®, "Residual®);

--Cc",

4-36

Identify Key Parameters for Estimation (Code)

100 T T T T T T
[T Eye Data
sof | ~ S|~ — —Model | 1
Residua
BOF | ,
2 |
@ 40r [[[
8 |
E E'D B | |
= |
g 0 —————i
o - [
=] |
© |
o -40}
= [([([
<t . . |
-60 L i
| | |
|
-80 F | | - | T
I i | T o | wme -
_1m L il L L o L L - L
0 2 4 L]) 10 12 14
Time (sec)

The objective function used above is defined in the file "sdoVOR_Objective.m".
type sdoVOR_Objective.m
function vals = sdoVOR_Objective(v, Exp, Method)

% Compare model output with data
%

% Inputs:

% v - vector of parameters and/or states

% Exp - Experiment object

% Method - "SSE" for scalar output, "Residuals® for vector of residuals

% Requirement setup
req = sdo.requirements.SignalTracking;

4-37

4 Sensitivity Analysis

req.Type = "==7;
req-Method = Method;

% If Residuals requested, keep on same scale as signals, for plotting
switch Method
case "Residuals”
req-Normalize = "off";
end

% Simulate the model

Exp = setEstimatedValues(Exp, V); % use vector of parameters/states
Simulator = createSimulator(Exp);

Simulator = sim(Simulator);

% Compare model output with data

SimLog = find(Simulator.LoggedData, ...

get_param(Exp-ModelName, "SignalLoggingName®));

OutputModel = find(SimLog, “EyeMotion®);

Model _Error = evalRequirement(req, OutputModel_Values, Exp.OutputData.Values);
vals.F = Model Error;

Sensitivity Analysis

Create an object to sample the parameter space.

ps = sdo.ParameterSpace([Delay ; Gain ; Tc ; Tpl);
Generate 100 samples from the parameter space.
rng default; % for reproducibility

X = sdo.sample(ps, 100);
sdo.scatterPlot(x);

4-38

Identify Key Parameters for Estimation (Code)

%1073
10 oy -
g, RS
ﬂJ L] L]
O '?.} ‘iI
0

- a'- --:

= "- - r‘rj
§ o IR,

0.6 ey
30 il Sole e llp St atef o -
o |y | wRETT T
Y "'3 oot ~ gy
o ™ ?\-‘! el :"t' f{fﬂ."-

0.06
0ol P3N __ﬂ-#. Yy
-

S Qe

0 5 10 0.6 0.8 1 10 20 30 0 0.02 004
Delay.. 1072 Gain Tc Tp

Tp

The sampling above used default options, and these are reflected in the plots above.
Parameter values were selected at random from distributions that were uniform over the
range of each parameter. Consequently, the histogram plots along the diagonal appear
approximately uniform. If Statistics Toolbox is available, a number of distributions

may be used in addition to uniform and normal, and sampling can be done in a Latin
hypercube pattern.

The off-diagonal plots above show scatter plots between pairs of different variables.
Since we did not specify a RankCorrelation matrix in ps, the scatter plots do not indicate
correlations. However, if parameters were believed to be correlated, this can be specified
using the RankCorrelation property of ps.

4-39

4 Sensitivity Analysis

4-40

For sensitivity analysis, it is simpler to use a scalar objective, so we will specify the sum
of squared errors, "SSE":

estFcn = @(v) sdoVOR_Objective(v, Exp, "SSE");
y = sdo.evaluate(estFcn, ps, X);

Model evaluated at 100 samples.

Evaluation could also be sped up using parallel computing.
Obtain the standardized regression coefficients.

opts = sdo.AnalyzeOptions;

opts.Method = "StandardizedRegression”;

sensitivities = sdo.analyze(x, y, opts);

Other types of analysis include correlation and, if Statistics Toolbox is available, partial
correlation.

We can view the analysis results.

disp(sensitivities)

F
Delay 0.01303
Gain -0.90873
Tc -0.044395
Tp 0.19919

For standardized regression, parameters that highly influence the model output have
sensitivity magnitudes close to 1. On the other hand, less influential parameters have
smaller sensitivity magnitudes. We see that this objective function is sensitive to changes
in the Gain and Tp parameters, but much less sensitive to changes in the Delay and Tc
parameters.

You can validate sensitivity analysis results by resampling and reevaluating the
objective function for the samples. You can also use engineering intuition for a quick
analysis. For example, in this model, the time constant Tc ranges from 10 to 30 seconds.
Even the minimum value of 10 seconds is large compared to the 2-second duration

for which the head motion stimulation is held at constant velocity. Therefore, Tc is

not expected to affect the output greatly. However, even when this kind of intuition

Identify Key Parameters for Estimation (Code)

is not readily available in other models, sensitivity analysis can help highlight which
parameters are influential.

Based on the results of sensitivity analysis, designate the Delay and Tc parameters
as fixed when optimizing. This reduction in the number of free parameters speeds up
optimization.

Delay.Free = false;
Tc.Free = false;

Optimization
We can use the minimum from sensitivity analysis as the initial guess for optimization.

[fval, idx_min] = min(y-F);
Delay.Value = x.Delay(idx_min);
Gain.Value = x.Gain(idx_min);
Tc.Value = x.Tc(idx_min);
Tp-Value = x.Tp(idx_min);

%

v = [Delay Gain Tc Tp];

opts = sdo.OptimizeOptions;
opts.Method = "fmincon”;

As was the case with model evaluations in sensitivity analysis, parallel computing could
be used to speed up the optimization.

vOpt = sdo.optimize(estFcn, v, opts);
disp(vOpt)

Optimization started 04-Sep-2014 11:28:07

max Step-size First-order
Iter F-count f(X) constraint optimality
0 5 13.4798 0
1 18 12.2052 0 0.129 305
2 30 11.1441 0 0.0648 781
3 41 10.0493 0 0.0843 289
4 46 9.23607 0 0.0758 227
5 51 8.76122 0 0.0183 10.1
6 56 8.75862 0 0.00184 0.476
7 57 8.75862 0 8.41e-05 0.476

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than

4-41

4 Sensitivity Analysis

the selected value of the step size tolerance and constraints are
satisfied to within the selected value of the constraint tolerance.

(1.1) =
Name: "Delay”
Value: 0.0038
Minimum: 0.0020
Maximum: 0.0090
Free: 0O
Scale: 0.0078
Info: [1x1 struct]
(1.2) =
Name: "Gain*®
Value: 0.9012
Minimum: 0.6000
Maximum: 1
Free: 1
Scale: 1
Info: [1x1 struct]
(1.,3) =
Name: "Tc*
Value: 16.6833
Minimum: 10
Maximum: 30
Free: 0O
Scale: 16
Info: [1x1 struct]
1.4 =
Name: "Tp*
Value: 0.0157
Minimum: 0.0050
Maximum: 0.0500
Free: 1
Scale: 0.0156

4-42

Identify Key Parameters for Estimation (Code)

Info: [1x1 struct]
1x4 param.Continuous

Visualizing Result of Optimization

Obtain the model response after estimation. Search for the model_residual signal in the
logged simulation data.

Exp = setEstimatedValues(Exp, vOpt);

Simulator = createSimulator(Exp);

Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,
get_param(model_name, "SignallLoggingName®));
EyeSignal = find(SimLog, "EyeMotion®);

Comparing the measured eye data with the optimized model response shows that the
residuals are much smaller.

estFcn = @(v) sdoVOR_Objective(v, Exp, "Residuals™);
Model_Error = estFcn(vOpt);
plot(Time, EyeData, "-g°", ...
EyeSignal .Values.Time, EyeSignal.Values.Data, "--c”,
Time, Model_Error.F, "-r");
xlabel ("Time (sec)");
ylabel ("Angular Velocity (deg/sec)”);
legend("Eye Data®", "Model™, "Residual™);

4-43

4 Sensitivity Analysis

4-44

100
[, T i Evye Data
BOF | | N ! T Neser [
' ' Residual
60 : | | ; i
IE) | |
f‘é or ' . I | : 1
& ' ' i | | |
2 20f | | | ' | 4
= ' '
e A
o |
E =20 F | I | | .
:_:n : | | | | |
o 40 F [i [[.
-e:% I | | | | |
-60 - | | | -
| [[
_80 , ! [
N R B
0 2 G 8 10 12
Time (sec)

Close the model

bdclose(model_name)

14

Optimization-Based Control Design

+ “Overview of Optimization-Based Compensator Design” on page 5-2

* “Time-Domain Design Requirements in Simulink” on page 5-4

* “Frequency-Domain Design Requirements in Simulink” on page 5-16

* “Time- and Frequency-Domain Requirements in SISO Design Tool” on page 5-38
* “Time-Domain Simulations in SISO Design Tool” on page 5-42

* “How to Design Optimization-Based Controllers for LTI Systems” on page 5-43

* “Optimize LTI System to Meet Frequency-Domain Requirements” on page 5-44

* “Designing Linear Controllers for Simulink Models” on page 5-64

5 Optimization-Based Control Design

Overview of Optimization-Based Compensator Design

5-2

You can design optimization-based controllers for Simulink models to meet time and
frequency-domain design requirements, as described in “Design Optimization to Meet
Time- and Frequency-Domain Requirements (GUI)” on page 3-95.

If you have Control System Toolbox software installed, you can also design and optimize
control systems by tuning controller elements or parameters within a SISO Design Task
in the Control and Estimation Tools Manager. You can tune elements or parameters such
as poles, zeros, and gains within any controller in the system and optimize the open and
closed loop responses to meet time- and frequency-domain requirements.

Optimize the responses of systems in the SISO Design Task to meet both time- and
frequency-domain performance requirements by graphically constraining signals:

* Add frequency-domain design requirements to plots such as root-locus, Nichols, and
Bode in the SISO Design Task graphical tuning editor called SISO Design Tool.

* Add time-domain design requirements to plots such as step or impulse response
(when displayed within the LTI Viewer as part of a SISO Design Task).

You can use optimization methods in a SISO Design Task in the Control and Estimation
Tools Manager to tune both command-line LTI models as well as Simulink models:

* Create an LTI model using the Control System Toolbox command-line functions
and use the sisotool function to create a SISO Design Task for the model. For an
example, see “Optimize LTI System to Meet Frequency-Domain Requirements” on
page 5-44.

+ Use a Simulink Compensator Design task (from Simulink Control Design software) to
automatically analyze the model and then create a SISO Design Task for a linearized
version of the model. You can then use the optimization techniques in the SISO
Design Task to tune the response of the linearized Simulink model. For an example,

see “Design Optimization-Based PID Controller for Linearized Simulink Model
(GUD)”.

Note: When using response optimization within a SISO Design Task you cannot add
uncertainty to system parameters.

When using a SISO Design Task, Simulink Design Optimization software automatically
sets the model's simulation start and stop time and you cannot directly change them.

Overview of Optimization-Based Compensator Design

By default, the simulation starts at 0 and continues until the SISO Design Task
determines that the dynamics of the model have settled out. In addition, when the design
requirements extend beyond this point, the simulation continues to the extent of the
design requirements. Although you cannot directly adjust the start or stop time of the
simulation, you can adjust the design requirements to extend further in time and thus
force the simulation to continue to a certain point.

5-3

5 Optimization-Based Control Design

Time-Domain Design Requirements in Simulink

5-4

In this section...

“Specify Piecewise-Linear Lower and Upper Bounds” on page 5-23
“Specify Step Response Characteristics” on page 5-13

“Track Reference Signals” on page 5-30

“Specify Custom Requirements” on page 5-33

“Edit Design Requirements” on page 5-36

Specify Piecewise-Linear Lower and Upper Bounds

To specify upper and lower bounds on a signal:

1

In the Design Optimization tool, select Signal Bound in the New drop-down list. A
window opens where you specify upper or lower bounds on a signal.

Specify a requirement name in the Name box.
Select the requirement type using the Type list.

Specify the edge start and end times and corresponding amplitude in the Time (s)
and Amplitude columns.

Click lLI to specify additional bound edges.

Select a row and click ILI to delete a bound edge.

In the Select Signals to Bound area, select a logged signal to apply the
requirement to.

If you have already selected signals, as described in “Specify Signals to Log” on page
3-12, they appear in the list. Select the corresponding check-box.

If you haven'’t selected a signal to log:

Click ILI A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a
requirement.

Time-Domain Design Requirements in Simulink

Create 5ignal 5et
Signal set: | Sig|

Signal

Mo signals have currently been selected.
Please go badk to the model and dick on [|m)
a signal to selectit,

[

| ok || cancel || Help |

The window updates and displays the name of the block and the port number
where the selected signal is located.

Select the signal and click to add it to the signal set.

d Inthe Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

7 Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also appears in
the Design Optimization tool window.

8 (Optional) In the graphical display, you can:

“Move Constraints Graphically”

+ “Position Constraints Exactly”

Alternatively, you can add a Check Custom Bounds block to your model to specify
piecewise-linear bounds.

Specify Step Response Characteristics

To specify step response characteristics:

5-5

5 Optimization-Based Control Design

1 You can apply this requirement to either a signal or a linearization of your model.

In the Design Optimization Tool, click New. To apply this requirement to a

signal, select the Step Response Envelope entry in the New Time Domain
Requirement section of the New list. To apply this requirement to a linearization
of your model, select the Step Response Envelope entry in the New Frequency
Domain Requirement section of the New list. The latter option requires Simulink

Control Design software.

A window opens where you specify the step response requirements on a signal, or
system.

2 Specify a requirement name in the Name box.

Specify the step response characteristics:

% Overshoot

L1 Vs % Settling
Final Value / \/\\\//\‘_J -

% Rise

Amplitude

% Undershoot

Initial Value K/ ¢ |

Rise Time Settling Time Time

+ Initial value: Input level before the step occurs
+ Step time: Time at which the step takes place

+ Final value: Input level after the step occurs

Time-Domain Design Requirements in Simulink

+ Rise time: The time taken for the response signal to reach a specified percentage
of the step's range. The step's range is the difference between the final and initial
values.

* % Rise: The percentage used in the rise time.

Settling time: The time taken until the response signal settles within a specified
region around the final value. This settling region is defined as the final step
value plus or minus the specified percentage of the final value.

% Settling: The percentage used in the settling time.

% Overshoot: The amount by which the response signal can exceed the final
value. This amount is specified as a percentage of the step's range. The step's
range is the difference between the final and initial values.

* % Undershoot: The amount by which the response signal can undershoot the
initial value. This amount is specified as a percentage of the step's range. The
step's range is the difference between the final and initial values.

4 Specify the signals or systems to be bound.

You can apply this requirement to a model signal or to a linearization of your
Simulink model (requires Simulink Control Design software).

* Apply this requirement to a model signal:

In the Select Signals to Bound area, select a logged signal to which you will
apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to
Log” on page 3-12, it appears in the list. Select the corresponding check-box.

If you haven’t selected a signal to log:
Click lLI A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a
requirement.

5-7

5 Optimization-Based Control Design

Create 5ignal et~
Signal set: | Sig|

Signal

Mo signals have currently been selected.
Please go back to the model and dick on o |
a signal to select it

[

| ok || cancel || Help |

The window updates and displays the name of the block and the port number
where the selected signal is located.

Select the signal and click to add it to the signal set.

d Inthe Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

+ Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is linearized
and sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in
the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to open
the Create linearization I/O set dialog box.

5-8

See Also

For more information on using this dialog box, see “Create Linearization I/O
Sets”.

For more information on linearization, see “What Is Linearization?”.
Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also appears in
the Design Optimization tool window.

Alternatively, you can use the Check Step Response Characteristics block to specify step
response bounds for a signal.

See Also

“Design Optimization to Meet Step Response Requirements (GUI)”

Track Reference Signals

Use reference tracking to force a model signal to match a desired signal.

To track a reference signal:

1

In the Design Optimization tool, select Signal Tracking in the New drop-down list.
A window opens where you specify the reference signal to track.

Specify a requirement name in the Name box.

Define the reference signal by entering vectors, or variables from the workspace, in
the Time vector and Amplitude fields.

Click Update reference signal data to use the new amplitude and time vector as
the reference signal.

Specify how the optimization solver minimizes the error between the reference and
model signals using the Tracking Method list:

SSE — Reduces the sum of squared errors
* SAE — Reduces the sum of absolute errors

In the Specify Signal to Track Reference Signal area, select a logged signal to
apply the requirement to.

5-9

5 Optimization-Based Control Design

If you already selected a signal to log, as described in “Specify Signals to Log” on
page 3-12, they appear in the list. Select the corresponding check-box.

If you haven’t selected a signal to log:

a
Click . A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a
requirement.

Create 5ignal et

Signal set: |Sig|

Signal

Mo signals have currently been selected.
Please go badk to the model and dick on o i)
a signal to select it.

[

| ok || Cancel || Help |

The window updates and displays the name of the block and the port number
where the selected signal is located.

Select the signal and click to add it to the signal set.

d Inthe Signal set box, enter a name for the selected signal set.
Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

e Select the check-box corresponding to the signal and click OK.

A variable with the specified requirement name appears in the Design

Optimization Workspace. A graphical display of the signal bound also appears in
the Design Optimization tool window.

5-10

See Also

Note: When tracking a reference signal, the software ignores the maximally feasible
solution option. For more information on this option, see “Selecting Optimization
Termination Options” on page 3-76.

Alternatively, you can use the Check Against Reference block to specify a reference
signal to track.

See Also

“Design Optimization to Track Reference Signal (GUI)”

Specify Custom Requirements

To specify custom requirements, such as minimizing system energy:

1 In the Design Optimization tool, select Custom Requirement in the New list. A
window opens where you specify the custom requirement.

2 Specify a requirement name in the Name box.

3 Specify the requirement type using the Type list.

4 Specify the name of the function that contains the custom requirement in the
Function box. The field must be specified as a function handle using @. The function

must be on the MATLAB path. Click =N to review or edit the function.

If the function does not exist, clicking Ii, opens a template MATLAB file.
Use this file to implement the custom requirement. The default function name is
myCustomRequirement.

5 (Optional) If you want to prevent the solver from considering specific parameter
combinations, select the Error if constraint is violated check box. Use this option
for parameter-only constraints.

During an optimization iteration, the solver evaluates requirements with this option
selected first.

If the constraint is violated, the solver skips evaluating any remaining
requirements and proceeds to the next iterate.

5-11

5 Optimization-Based Control Design

5-12

+ If the constraint is not violated, the solver evaluates the remaining requirements
for the current iterate. If any of the remaining requirements bound signals or
systems, then the solver simulates the model .

For more information, see “Skip Model Simulation Based on Parameter Constraint
Violation (GUI)”.

Note: If you select this check box, then do not specify signals or systems to bound. If
you do specify signals or systems, then this check box is ignored.

(Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your Simulink
model (requires Simulink Control Design software), or both.

Click Select Signals and Systems to Bound (Optional) to view the signal and
linearization I/O selection area.

Apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the
requirement.

If you have already selected a signal to log, as described in “Specify Signals to
Log” on page 3-12, it appears in the list. Select the corresponding check box.

If you have not selected a signal to log:

Click lLI A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a
requirement.

See Also

Create 5ignal et~
Signal set: | Sig|

Signal

Mo signals have currently been selected.
Please go back to the model and dick on o |
a signal to select it

[

| ok || cancel || Help |

The window updates and displays the name of the block and the port number
where the selected signal is located.

Select the signal and click to add it to the signal set.

d Inthe Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

+ Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is linearized
and sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in
the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to open
the Create linearization I/O set dialog box. For more information on using
this dialog box, see “Create Linearization I/O Sets”.

5-13

5 Optimization-Based Control Design

5-14

For more information on linearization, see “What Is Linearization?”.

7 Click OK.

A new variable, with the specified name, appears in the Design Optimization
Workspace of the Design Optimization tool. A graphical display of the requirement
also appears in the Design Optimization tool window.

See Also

+ “Design Optimization to Meet a Custom Objective (GUI)” on page 3-112
* “Design Optimization to Meet Custom Signal Requirements (GUI)” on page 3-142

Edit Design Requirements

The Edit Design Requirement dialog box allows you to exactly position constraint
segments and to edit other properties of these constraints. The dialog box has two main
components:

* An upper panel to specify the constraint you are editing

* A lower panel to edit the constraint parameters

The upper panel of the Edit Design Requirement dialog box resembles the image in the
following figure.

Design reguirement; |Upper time response bound from 0to 10 sec :I

In the context of the SISO Tool in Control System Toolbox software, Design
requirement refers to both the particular editor within the SISO Tool that contains the
requirement and the particular requirement within that editor. To edit other constraints
within the SISO Tool, select another design requirement from the drop-down menu.

Edit Design Requirement Dialog Box Parameters

The particular parameters shown within the lower panel of the Edit Design Requirement
dialog box depend on the type of constraint/requirement. In some cases, the lower panel
contains a grid with one row for each segment and one column for each constraint
parameter. The following table summarizes the various constraint parameters.

See Also

Edit Design Requirement Dialog Box Parameters

Parameter Found in Description

Time Upper and lower time Defines the time range of a segment
response bounds on step and |within a constraint/requirement.
impulse response plots

Amplitude Upper and lower time Defines the beginning and ending

response bounds on step and
impulse response plots

amplitude of a constraint segment.

Slope (1/s)

Upper and lower time
response bounds

Defines the slope, in 1/s, of a constraint
segment. It is an alternative method

of specifying the magnitude values.
Entering a new Slope value changes
any previously defined magnitude
values.

Final value

Step response bounds

Defines the input level after the step
occurs.

Rise time Step response bounds Defines a constraint segment for a
particular rise time.

% Rise Step response bounds The percentage of the step's range used
to describe the rise time.

Settling time Step response bounds Defines a constraint segment for a

particular settling time.

% Settling

Step response bounds

The percentage of the final value that
defines the settling region used to
describe the settling time.

% Overshoot

Step response bounds

% Undershoot

Step response bounds

Defines the constraint segments for a
particular percent undershoot.

5-15

5 Optimization-Based Control Design

Frequency-Domain Design Requirements in Simulink

5-16

In this section...

“Specify Lower Bounds on Gain and Phase Margin” on page 5-40

“Specify Piecewise-Linear Lower and Upper Bounds on Frequency Response” on page
5-42

“Specify Bound on Closed-Loop Peak Gain” on page 5-44

“Specify Lower Bound on Damping Ratio” on page 5-46

“Specify Upper and Lower Bounds on Natural Frequency” on page 5-48

“Specify Upper Bound on Approximate Settling Time” on page 5-50

“Specify Piecewise-Linear Upper and Lower Bounds on Singular Values” on page 5-52
“Specify Step Response Characteristics” on page 5-13

“Specify Custom Requirements” on page 5-33

Specify Lower Bounds on Gain and Phase Margin

To specify lower bounds on the gain and phase margin of a linear system:

1 In the Design Optimization tool, select Gain and Phase Margin in the New list. A
window opens where you specify lower bounds on the gain and phase margin of your
linear system.

2 Specify a requirement name in Name.

Specify bounds on the gain margin or phase margin, or both.

Frequency-Domain Design Requirements in Simulink

Bode Diagram
o= 954 dB (at 2.24 radfz) , Pm= 254 deg (st 1.23 radfs)
100 T T T
a0 B
o
=
o
-]] P e Gain Marain 1
= : : @— Gain' Margin
g Do
= =50 - : : 4
00 L AR | T o
-80 - -
=135
=
LE}
=
o -180 -
(5]
(]
=
R
270 e L Lol L Lol L MR A | L PR = |
102 17 Tia 10" 100

Frequency (radiz)

* Gain margin — Amount of gain increase or decrease required to make the loop
gain unity at the frequency where the phase angle is —180°.

* Phase margin — Amount of phase increase or decrease required to make the
phase angle —180° when the loop gain is 1.0

To specify a lower bound on the gain margin or phase margin, or both, select the
corresponding check box and enter the lower bound value.

In the Select Systems to Bound section, select the linear systems to which this
requirement applies.

Linear systems are defined by snapshot times at which the model is linearized and
sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in the
list. Select the corresponding check box.

5-17

5 Optimization-Based Control Design

5-18

6

If you have not created a linearization input/output set, click lLI to open the
Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/0
Sets”.

For more information on linearization, see “What Is Linearization?”.

Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also appears in
the Design Optimization tool window.

(Optional) In the graphical display, you can:

+ “Move Constraints Graphically”

+ “Position Constraints Exactly”

Alternatively, you can use the Check Gain and Phase Margins block to specify bounds on
the gain and phase margin. (Requires Simulink Control Design.)

Specify Piecewise-Linear Lower and Upper Bounds on Frequency
Response

To specify upper or lower bounds on the magnitude of a system response:

1

In the Design Optimization tool, select Bode Magnitude in the New list. A window
opens where you specify the lower or upper bounds on the magnitude of the system
response.

Specify a requirement name in the Name box.
Specify the requirement type using the Type list.

Specify the edge start and end frequencies and corresponding magnitude in the
Frequency and Magnitude columns.

Insert or delete bound edges.

Click lLI to specify additional bound edges.

Frequency-Domain Design Requirements in Simulink

Select a row and click lLI to delete a bound edge.
In the Select Systems to Bound section, select the linear systems to which this

requirement applies.

Linear systems are defined by snapshot times at which the model is linearized and
sets of linearization I/0O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in the
list. Select the corresponding check box.

If you have not created a linearization input/output set, click ILI to open the
Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/0
Sets”.

For more information on linearization, see “What Is Linearization?”.
Click OK.
A new variable with the specified name appears in the Design Optimization

Workspace of the Design Optimization tool window. A graphical display of the
requirement also appears in the Design Optimization tool window.

5-19

5 Optimization-Based Control Design

5-20

pictune_demosSuim:1 [in], pictune_demaoiPlant: 1 [out, Open Loogp]

20k
Ty

=11 I

Magnituds (dB)

anfe

A00 b

-120
1}

45.....5
ank.d

4355

Phase (deg)

Aanfs

oos L H H s H
10" 10° 10" 10 10°
Frequency (radis)

8 (Optional) In the graphical display, you can:

“Move Constraints Graphically”

+ “Position Constraints Exactly”

Alternatively, you can use the Check Bode Characteristics block to specify bounds on the
magnitude of the system response. (Requires Simulink Control Design.)

Specify Bound on Closed-Loop Peak Gain

To specify an upper bound on the closed-loop peak response of a system:

1 In the Design Optimization tool, select Closed-Loop Peak Gain in the New list. A
window opens where you specify an upper bound on the closed-loop peak gain of the
system.

2 Specify a requirement name in the Name box.

3 Specify the upper bound on the closed-loop peak gain in the Closed-Loop peak
gain box.

Frequency-Domain Design Requirements in Simulink

In the Select Systems to Bound section, select the linear systems to which this
requirement applies.

Linear systems are defined by snapshot times at which the model is linearized and
sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a vector.
b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in the
list. Select the corresponding check box.

If you have not created a linearization input/output set, click lLI to open the
Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O
Sets”.

For more information on linearization, see “What Is Linearization?”.
Click OK.
A new variable with the specified name appears in the Design Optimization

Workspace of the Design Optimization tool window. A graphical display of the
requirement also appears in the Design Optimization tool window.

5-21

5 Optimization-Based Control Design

5-22

pictune_demotSum:d [in], pidtune_demoPlant:1 [out,Open Loogp]

Open-Loop Gain (dB)

-200 L H T Lo ' o :
-360 =318 =270 =228 -180 -135 -90 -45]

Open-Loop Phasze (ded)

6 (Optional) In the graphical display, you can:

+ “Move Constraints Graphically”

+ “Position Constraints Exactly”

Alternatively, you can use the Check Nichols Characteristics block to specify bounds on
the magnitude of the system response. (Requires Simulink Control Design.)

Specify Lower Bound on Damping Ratio

To specify a lower bound on the damping ratio of the system:

1 In the Design Optimization tool, select Damping Ratio in the New list. A window
opens where you specify an upper bound on the damping ratio of the system.

2 Specify a requirement name in the Name box.

3 Specify the lower bound on the damping ratio in the Damping ratio box.

Frequency-Domain Design Requirements in Simulink

In the Select Systems to Bound section, select the linear systems to which this
requirement applies.

Linear systems are defined by snapshot times at which the model is linearized and
sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in the
list. Select the corresponding check box.

If you have not created a linearization input/output set, click lLI to open the
Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O
Sets”.

For more information on linearization, see “What Is Linearization?”.
Click OK.
A new variable with the specified name appears in the Design Optimization

Workspace of the Design Optimization tool. A graphical display of the requirement
also appears in the Design Optimization tool window.

5-23

5 Optimization-Based Control Design

pictune_demotSum:d [in], pidtune_demoPlant:1 [out,Open Loogp]

Imaginary Axis (Seconds")

) 25 2 a5 A 05 o

Real Lxis (Seconds")

6 (Optional) In the graphical display, you can:

+ “Move Constraints Graphically”

+ “Position Constraints Exactly”

Alternatively, you can use the Check Pole-Zero Characteristics block to specify a bound
on the damping ratio. (Requires Simulink Control Design.)

Specify Upper and Lower Bounds on Natural Frequency

To specify a bound on the natural frequency of the system:

1 In the Design Optimization tool, select Natural Frequency in the New list. A
window opens where you specify a bound on the natural frequency of the system.

2 Specify a requirement name in the Name box.

5-24

Frequency-Domain Design Requirements in Simulink

Specify a lower or upper bound on the natural frequency in the Natural frequency
box.

In the Select Systems to Bound section, select the linear systems to which this
requirement applies.

Linear systems are defined by snapshot times at which the model is linearized and
sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in the
list. Select the corresponding check box.

If you have not created a linearization input/output set, click ILI to open the
Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O
Sets”.

For more information on linearization, see “What Is Linearization?”.
Click OK.
A new variable with the specified name appears in the Design Optimization

Workspace of the Design Optimization tool. A graphical display of the requirement
also appears in the Design Optimization tool window.

5-25

5 Optimization-Based Control Design

5-26

pictune_demotSum:d [in], pidtune_demoPlant:1 [out,Open Loogp]

0B-., .- 048 034022 04 475

ara
15"

L I

Imaginary Axis (seconds")

A5

Yo 0aF eadl. 022
= s 4 s 0 0s

Real Lxis (Seconds")

6 (Optional) In the graphical display, you can:

“Move Constraints Graphically”
+ “Position Constraints Exactly”
Alternatively, you can use the Check Pole-Zero Characteristics block to specify a bound

on the natural frequency. (Requires Simulink Control Design.)

Specify Upper Bound on Approximate Settling Time

To specify an upper bound on the approximate settling time of the system:

1 In the Design Optimization tool, select Settling Time in the New list. A window
opens where you specify an upper bound on the approximate settling time of the
system.

2 Specify a requirement name in the Name box.

Frequency-Domain Design Requirements in Simulink

Specify the upper bound on the approximate settling time in the Settling time box.

In the Select Systems to Bound section, select the linear systems to which this
requirement applies.

Linear systems are defined by snapshot times at which the model is linearized and
sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in the
list. Select the corresponding check box.

If you have not created a linearization input/output set, click ILI to open the
Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O
Sets”.

For more information on linearization, see “What Is Linearization?”.
Click OK.
A new variable with the specified name appears in the Design Optimization

Workspace of the Design Optimization tool. A graphical display of the requirement
also appears in the Design Optimization tool window.

5-27

5 Optimization-Based Control Design

5-28

pictune_demotSum:d [in], pidtune_demoPlant:1 [out,Open Loogp]

05— — - — T —
: - : 0z ‘088,
0.4-_:: .:. x
Dagd ' T F
03

Togss.

Imaginary Axis (seconds")

5:-0_99'8"""':”” :

03-
e] e -
) ; e X

: 7 oez L0Es
sk - 1 PR "l (- 1 Ll
-2 -1.8 -1.6 -1.4 -1.2 -1 -0 -0E -0.4 -0.2 u]

Real Lxis (Seconds")

6 (Optional) In the graphical display, you can:

“Move Constraints Graphically”

+ “Position Constraints Exactly”

Alternatively, you can use the Check Pole-Zero Characteristics block to specify the
approximate settling time. (Requires Simulink Control Design.)

Specify Piecewise-Linear Upper and Lower Bounds on Singular Values

To specify piecewise-linear upper and lower bounds on the singular values of a system:

1 In the Design Optimization tool, select Singular Values in the New list. A window
opens where you specify the lower or upper bounds on the singular values of the
system.

2 Specify a requirement name in the Name box.

Frequency-Domain Design Requirements in Simulink

Specify the requirement type using the Type list.

Specify the edge start and end frequencies and corresponding magnitude in the
Frequency and Magnitude columns, respectively.

Insert or delete bound edges.

Click ILIto specify additional bound edges.

Select a row and click ILI to delete a bound edge.

In the Select Systems to Bound section, select the linear systems to which this
requirement applies.

Linear systems are defined by snapshot times at which the model is linearized and
sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in the
list. Select the corresponding check box.

If you have not created a linearization input/output set, click lLI to open the
Create linearization I/0O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O
Sets”.

For more information on linearization, see “What Is Linearization?”.
Click OK.
A new variable with the specified name appears in the Design Optimization

Workspace of the Design Optimization tool. A graphical display of the requirement
also appears in the Design Optimization tool window.

5-29

5 Optimization-Based Control Design

5-30

pictune_demofSum: [in], pidtune_demoPlant:1 [out, Open Loogp]
0 T T .

T T

o - —

a0l : : T SR A EE TR .

Singular Yalues (dB)

40 - ; DLl L
50 -

1] SOPPRPI SRR RIS N T

i HEE L Py
107 10 10" 10
Freguency (racdis)

8 (Optional) In the graphical display, you can:

“Move Constraints Graphically”

+ “Position Constraints Exactly”

Alternatively, you can use the Check Singular Value Characteristics block to specify
bounds on the singular value. (Requires Simulink Control Design.)

Specify Step Response Characteristics
To specify step response characteristics:
1 You can apply this requirement to either a signal or a linearization of your model.

In the Design Optimization Tool, click New. To apply this requirement to a
signal, select the Step Response Envelope entry in the New Time Domain

Frequency-Domain Design Requirements in Simulink

Requirement section of the New list. To apply this requirement to a linearization
of your model, select the Step Response Envelope entry in the New Frequency
Domain Requirement section of the New list. The latter option requires Simulink
Control Design software.

A window opens where you specify the step response requirements on a signal, or
system.

Specify a requirement name in the Name box.

Specify the step response characteristics:

% Overshoot

L1 Vs % Settling
Final Value \/\\\//\.___L -

% Rise

Amplitude

% Undershoot

Initial Value K/ ¢ |

Rise Time Settling Time Time

+ Initial value: Input level before the step occurs
+ Step time: Time at which the step takes place
* Final value: Input level after the step occurs

+ Rise time: The time taken for the response signal to reach a specified percentage
of the step's range. The step's range is the difference between the final and initial

values.

* % Rise: The percentage used in the rise time.

5-31

5 Optimization-Based Control Design

5-32

+ Settling time: The time taken until the response signal settles within a specified
region around the final value. This settling region is defined as the final step
value plus or minus the specified percentage of the final value.

* % Settling: The percentage used in the settling time.

% Overshoot: The amount by which the response signal can exceed the final
value. This amount is specified as a percentage of the step's range. The step's
range is the difference between the final and initial values.

% Undershoot: The amount by which the response signal can undershoot the
initial value. This amount is specified as a percentage of the step's range. The
step's range is the difference between the final and initial values.

4 Specify the signals or systems to be bound.

You can apply this requirement to a model signal or to a linearization of your
Simulink model (requires Simulink Control Design software).

* Apply this requirement to a model signal:

In the Select Signals to Bound area, select a logged signal to which you will
apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to
Log” on page 3-12, it appears in the list. Select the corresponding check-box.

If you haven’t selected a signal to log:

Click lLl A window opens where you specify the logged signal.

b Inthe Simulink model window, click the signal to which you want to add a
requirement.

Frequency-Domain Design Requirements in Simulink

Create 5ignal et~
Signal set: | Sig|

Signal

Mo signals have currently been selected.
Please go back to the model and dick on o |
a signal to select it

[

| ok || cancel || Help |

The window updates and displays the name of the block and the port number
where the selected signal is located.

Select the signal and click to add it to the signal set.

d Inthe Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

+ Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is linearized
and sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in
the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to open
the Create linearization I/O set dialog box.

5-33

5 Optimization-Based Control Design

5-34

For more information on using this dialog box, see “Create Linearization I/O
Sets”.

For more information on linearization, see “What Is Linearization?”.
Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also appears in
the Design Optimization tool window.

Alternatively, you can use the Check Step Response Characteristics block to specify step
response bounds for a signal.

See Also

“Design Optimization to Meet Step Response Requirements (GUI)”

Specify Custom Requirements

To specify custom requirements, such as minimizing system energy:

1

w

In the Design Optimization tool, select Custom Requirement in the New list. A
window opens where you specify the custom requirement.

Specify a requirement name in the Name box.
Specify the requirement type using the Type list.

Specify the name of the function that contains the custom requirement in the
Function box. The field must be specified as a function handle using @. The function

must be on the MATLAB path. Click ‘i, to review or edit the function.

If the function does not exist, clicking li, opens a template MATLAB file.
Use this file to implement the custom requirement. The default function name is
myCustomRequirement.

(Optional) If you want to prevent the solver from considering specific parameter
combinations, select the Error if constraint is violated check box. Use this option
for parameter-only constraints.

See Also

During an optimization iteration, the solver evaluates requirements with this option
selected first.

If the constraint is violated, the solver skips evaluating any remaining
requirements and proceeds to the next iterate.

If the constraint is not violated, the solver evaluates the remaining requirements
for the current iterate. If any of the remaining requirements bound signals or
systems, then the solver simulates the model .

For more information, see “Skip Model Simulation Based on Parameter Constraint
Violation (GUI)”.

Note: If you select this check box, then do not specify signals or systems to bound. If
you do specify signals or systems, then this check box is ignored.

(Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your Simulink
model (requires Simulink Control Design software), or both.

Click Select Signals and Systems to Bound (Optional) to view the signal and
linearization I/O selection area.

* Apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the
requirement.

If you have already selected a signal to log, as described in “Specify Signals to
Log” on page 3-12, it appears in the list. Select the corresponding check box.

If you have not selected a signal to log:

Click lLI A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a
requirement.

5-35

5 Optimization-Based Control Design

Create 5ignal et~
Signal set: | Sig|

Signal

Mo signals have currently been selected.
Flease go back to the model and dick an o =1
a signal to select it

| ok || cancel || Help |

The window updates and displays the name of the block and the port number
where the selected signal is located.

Select the signal and click to add it to the signal set.

d Inthe Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

+ Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is linearized
and sets of linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it will appear in
the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to open
the Create linearization I/O set dialog box. For more information on using
this dialog box, see “Create Linearization I/O Sets”.

5-36

See Also

For more information on linearization, see “What Is Linearization?”.

7 Click OK.

A new variable, with the specified name, appears in the Design Optimization
Workspace of the Design Optimization tool. A graphical display of the requirement
also appears in the Design Optimization tool window.

See Also

* “Design Optimization to Meet a Custom Objective (GUI)” on page 3-112
* “Design Optimization to Meet Custom Signal Requirements (GUI)” on page 3-142

5-37

5 Optimization-Based Control Design

Time- and Frequency-Domain Requirements in SISO Design Tool

5-38

In this section...

“Root Locus Diagrams” on page 5-38

“Open-Loop and Prefilter Bode Diagrams” on page 5-40
“Open-Loop Nichols Plots” on page 5-40

“Step/Impulse Response Plots” on page 5-41

Root Locus Diagrams

+ “Settling Time” on page 5-38

+ “Percent Overshoot” on page 5-38
+ “Damping Ratio” on page 5-39

+ “Natural Frequency” on page 5-39

* “Region Constraint” on page 5-39
Settling Time

If you specify a settling time in the continuous-time root locus, a vertical line appears on
the root locus plot at the pole locations associated with the value provided (using a first-
order approximation). In the discrete-time case, the constraint is a curved line.

It is required that Re{pole} <—4.6/ Tging for continuous systems and

log(abs(pole)) / Tyjscrete <—4-6/ Tgesiing for discrete systems. This is an approximation of

the settling time based on second-order dominant systems.
Percent Overshoot

Specifying percent overshoot in the continuous-time root locus causes two rays, starting
at the root locus origin, to appear. These rays are the locus of poles associated with

the percent value (using a second-order approximation). In the discrete-time case, the
constraint appears as two curves originating at (1,0) and meeting on the real axis in the
left-hand plane.

The percent overshoot p.o constraint can be expressed in terms of the damping ratio, as
in this equation:

Time- and Frequency-Domain Requirements in SISO Design Tool

p.0.=100e ™V 1-¢*

where { is the damping ratio.
Damping Ratio

Specifying a damping ratio in the continuous-time root locus causes two rays, starting
at the root locus origin, to appear. These rays are the locus of poles associated with
the damping ratio. In the discrete-time case, the constraint appears as curved lines
originating at (1,0) and meeting on the real axis in the left-hand plane.

The damping ratio defines a requirement on —Re{pole} / abs(pole) for continuous

systems and on

r =abs(pSys)
t = angle(pSys)

¢ = —log(r) / \(og(r)? +¢2
for discrete systems.
Natural Frequency

If you specify a natural frequency, a semicircle centered around the root locus origin
appears. The radius equals the natural frequency.

The natural frequency defines a requirement on abs(pole) for continuous systems and on

r =abs(pSys)
t = angle(pSys)

¢ = \Aog(r)? +£2 1 T modet
for discrete systems.
Region Constraint

Specifies an exclusion region in the complex plane, causing a line to appear between the
two specified points with a shaded region below the line. The poles must not lie in the
shaded region.

5-39

5 Optimization-Based Control Design

5-40

Open-Loop and Prefilter Bode Diagrams

+ “Gain and Phase Margins” on page 5-40
+ “Upper Gain Limit” on page 5-40

* “Lower Gain Limit” on page 5-40

Gain and Phase Margins

Specify a minimum phase and or a minimum gain margin.
Upper Gain Limit

You can specify an upper gain limit, which appears as a straight line on the Bode
magnitude curve. You must select frequency limits, the upper gain limit in decibels, and
the slope in dB/decade.

Lower Gain Limit

Specify the lower gain limit in the same fashion as the upper gain limit.

Open-Loop Nichols Plots

* “Phase Margin” on page 5-40

* “Gain Margin” on page 5-40

+ “Closed-Loop Peak Gain” on page 5-41

* “Gain-Phase Requirement” on page 5-41
Phase Margin

Specify a minimum phase amount.

While displayed graphically at only one location around a multiple of -180 degrees, this
requirement applies to phase margin regardless of actual phase (i.e., it is interpreted for
all multiples of -180).

Gain Margin
Specify a minimum gain margin.

While displayed graphically at only one location around a multiple of -180 degrees, this
requirement applies to gain margin regardless of actual phase (i.e., it is interpreted for
all multiples of -180).

Time- and Frequency-Domain Requirements in SISO Design Tool

Closed-Loop Peak Gain

Specify a peak closed-loop gain at a given location. The specified value can be positive
or negative in dB. The constraint follows the curves of the Nichols plot grid, so it is
recommended that you have the grid on when using this feature.

While displayed graphically at only one location around a multiple of -180 degrees, this
requirement applies to gain margin regardless of actual phase (i.e., it is interpreted for
all multiples of -180).

Gain-Phase Requirement

Specifies an exclusion region for the response on the Nichols plot. The response must not
pass through the shaded region.

This only applies to the region (phase and gain) drawn.

Step/Impulse Response Plots

+ “Upper Time Response Bound” on page 5-41

+ “Lower Time Response Bound” on page 5-41
Upper Time Response Bound
You can specify an upper time response bound.
Lower Time Response Bound

You can specify a lower time response bound.

Related Examples

. “How to Design Optimization-Based Controllers for LTI Systems” on page 5-43

. “Optimize LTI System to Meet Frequency-Domain Requirements” on page 5-44

. “Design Optimization-Based PID Controller for Linearized Simulink Model (GUI)”

5-41

5 Optimization-Based Control Design

Time-Domain Simulations in SISO Design Tool

5-42

When using a SISO Design Task, Simulink Design Optimization software automatically
sets the model's simulation start and stop time and you cannot directly change them.

By default, the simulation starts at 0 and continues until the SISO Design Task
determines that the dynamics of the model have settled out. In addition, when the design
requirements extend beyond this point, the simulation continues to the extent of the
design requirements. Although you cannot directly adjust the start or stop time of the
simulation, you can adjust the design requirements to extend further in time and thus
force the simulation to continue to a certain point.

How to Design Optimization-Based Controllers for LTI Systems

How to Design Optimization-Based Controllers for LTI Systems

To design optimization-based linear controller for an LTI model:

1

Create and import a linear model into a SISO Design Task. You can create an LTI
model at the MATLAB command line, as described in “Creating an LTI Plant Model”
on page 5-45.

Create a SISO Design Task with design and analysis plots, as described in “Creating
Design and Analysis Plots” on page 5-46.

To learn more about SISO Design Tool, see “Using the SISO Design Task in
the Controls & Estimation Tools Manager” in the Control System Toolbox
documentation.

Under Automated Tuning select Optimization based tuning as the Design
Method and then click the Optimize Compensators button to create a Response
Optimization task within the Control and Estimation Tools Manager. See
“Creating a Response Optimization Task” on page 5-48 for more information.

Within the Response Optimization node, select the Compensators pane to select
and configure the compensator elements you want to tune during the response
optimization. See “Selecting Tunable Compensator Elements” on page 5-50 for

more information.

Note: Compensator elements or parameters cannot have uncertainty when used with
frequency-domain based response optimization.

Under Design requirements in the Response Optimization node, select
the design requirements you want the system to satisfy. See “Adding Design
Requirements” on page 5-51 for more information.

Click the Start Optimization button within the Response Optimization node.
The optimization progress results appear under Optimization. The Compensators
pane contains the new, optimized compensator element values. See “Optimizing the
System's Response” on page 5-59 for more information.

5-43

5 Optimization-Based Control Design

Optimize LTl System to Meet Frequency-Domain Requirements

5-44

In this section...

“Introduction” on page 5-44

“Design Requirements” on page 5-44

“Creating an LTI Plant Model” on page 5-45

“Creating Design and Analysis Plots” on page 5-46
“Creating a Response Optimization Task” on page 5-48
“Selecting Tunable Compensator Elements” on page 5-50
“Adding Design Requirements” on page 5-51
“Optimizing the System's Response” on page 5-59

“Creating and Displaying the Closed-Loop System” on page 5-62

Introduction

When you have Control System Toolbox software, you can place Simulink Design
Optimization design requirements or constraints on plots in the SISO Design Tool
graphical tuning editor and analysis plots that are part of a SISO Design Task. This
allows you to include design requirements for response optimization in the frequency-
domain in addition to the time-domain. This topic guides you through an example using
frequency-domain design requirements to optimize the response of a system in the SISO
Design Task.

You can specify frequency-domain design requirements to optimize response signals for
any model that you can design within a SISO Design Task:

+ Command-line LTT models created with the Control System Toolbox commands

* Simulink models that have been linearized using Simulink Control Design software

Design Requirements

In this example, you use a linearized version of the following Simulink model.

Optimize LTI System to Meet Frequency-Domain Requirements

¥

= Iy (R |
Unit Step = s 242wl zetas+wlnZ

S
@ 1s um Gain Limited Transport Delay

Transfer Fon
Integrator gngns !\..IGI'E# EIH

You use optimization methods to design a compensator so that the closed loop system
meets the following design specifications when you excite the system with a unit step
input:

+ A maximum 30-second settling time

* A maximum 10% overshoot

* A maximum 10-second rise time

+ A limit of £0.7 on the actuator signal

Creating an LTl Plant Model

In the srotutl model, the plant model is composed of a gain, a limited integrator, a
transfer function, and a transport delay.

You want to design the compensator for the open loop transfer function of the linearized
srotutl model. The linearized srotutl plant model is composed of the gain, an
unlimited integrator, the transfer function, and a Padé approximation to the transport
delay.

To create an open loop transfer function based on the linearized srotutl model, enter
the following commands:

w0 =1;
zeta = 1;
Kint = 0.5;
Tdelay = 1;

[delayNum,delayDen] = pade(Tdelay,1);

integrator tfKint,[1 0]);

transfer_fcn tf(wo™2,[1 2*wO*zeta w0™2]);
delay_block tf(delayNum,delayDen);

open_loopTF integrator*transfer_fcn*delay_block;

If the plant model is “an array of models”, the controller is designed for a nominal model
only but you can analyze the control design for the remaining models in the array. For

5-45

5 Optimization-Based Control Design

5-46

more information, see “Control Design Analysis of Multiple Models” in the Control

System Toolbox documentation.

Tip You can directly linearize the Simulink model using Simulink Control Design

software.

Creating Design and Analysis Plots

This example uses a root locus diagram to design the response of the open loop transfer
function, open_loopTF. To create a SISO Design Task, containing a root-locus plot for
the open loop transfer function, use the following command:

sisotool ("rlocus* ,open_loopTF)

A SISO Design Task is created within the Control and Estimation Tools Manager, as

shown in the following figure.

Z]control and Estimation Tools Manager =] &3
File Edit Help

= N

A Workspace Architecture | Compensator Editor | Graphical Tuning | Analysis Plots | Automated Tuning |

E‘"@ SIS0 Design Task

- Design History Current Architecture:

Control Architecture ...

Loop Configuration. ..

System Data ...

Sample Time Conversion ...

Multimodel Configuration . ..

Modify architecture, labels and feedback signs.
Configure additional loop openings for multidoop design.
Import data for compensators and fixed systems,
Change the sample time of the design.

Change the nominal plant and multimodel options.

Show Architecture | Store Design | Help |

SIS0 Design Task Mode.

NIELE

Optimize LTI System to Meet Frequency-Domain Requirements

The Control and Estimation Tools Manager is a graphical environment for managing
and performing tasks such as designing SISO systems. The SISO Design Task node
contains five panels that perform actions related to designing SISO control systems. For
more information, see “Using the SISO Design Task in the Controls & Estimation Tools
Manager” in Control System Toolbox documentation.

The Architecture pane, within the SISO Design Task node, lets you choose the
architecture for the control system you are designing. This example uses the default
architecture. In this system, the plant model, G, is the open loop transfer function
open_loopTF, the prefilter, F, and the sensor, H, are set to 1, and the compensator, C, is
the compensator that will be designed using response optimization methods.

The SISO Design Task also contains a root locus diagram in the SISO Design Tool
graphical tuning editor.

) 5150 Design Tool |] 4
File Edit View Designs Analysis Tools ‘Window Help L'l

Mk xo ¥ [@a®n

Root Locus Editor for Open-Loop 1 (OL1)
g r r ; T

Imag Az

8 I I i I I
-6 -4 -2 1] A 4 G

Real Axiz

Rigkt-click on the plats for more desigh options .

5-47

http://www.mathworks.com/products/control/

5 Optimization-Based Control Design

5-48

In addition to the root-locus diagram, it is helpful to visualize the response of the system
with a step response plot. To add a step response:

1 Select the Analysis Plots pane with the SISO Design Task node of the Control
and Estimation Tool Manager.
2 Select Step for the Plot Type of Plot 1.

3 Under Contents of Plots, select the check box in column 1 for the response Closed
Looprtoy.

A step response plot appears in an LTI Viewer. The plot shows the response of the closed
loop system from r (input to the prefilter, F) to y (output of the plant model, G):

) LTI Yiewer for SISD Design Tool o] 1
File Edit ‘Window Help

D& aa|d

Step Responze
1.8 T T T T T T T T

Amplitude

0z I I I I I 1 I I
1] 10 20 30 40 a0 =1 70 a0 a0

Time (sec)

LTI Wiewver [V Real-Time Upclate

Creating a Response Optimization Task

There are several possible methods for designing a SISO system; this example uses an
automated approach involving response optimization methods. After creating the design

Optimize LTI System to Meet Frequency-Domain Requirements

and analysis plots as discussed in “Creating Design and Analysis Plots” on page 5-46,
you are ready to start a response optimization task to design the compensator.

To create a response optimization task:
1 Select the Automated Tuning pane within the SISO Design Task node in the

Control and Estimation Tools Manager.

2 Inthe Automated Tuning pane, select Optimization based tuning as the
Design Method.

3 Click the Optimize Compensators button to create the Response Optimization
node under the SISO Design Task node in the tree browser in the left pane of the
Control and Estimation Tools Manager.

The Response Optimization node contains four panes as shown in the next figure.

=] control and Estimation Tools Manager 1Ol x|
File Edit Help
| ~
ﬂ Workspace Owerview I Compensatars | Design requirements | Optimization
=4) SIS0 Design Task I
Design Histary
*...# | Response Optimization
| I
| 1
Step 1 | Step 2 1 Step 3
| I
| 1
I Set optimization 1
! options I
| 1
| 1
Select 1]
compensalors to 1 I
optimize | I
| r]
| 1
| I
Optimize ' - View results
| 1
| 1
| 1
Select design | 1
requirements : :
| I
| 1
| 1
Skart Opkimization | Help |
-
=
4

Response Cptimization

5-49

5 Optimization-Based Control Design

5-50

With the exception of the first pane, each corresponds to a step in the response
optimization process:

Overview: A schematic diagram of the response optimization process.

Compensators: Select and configure the compensator elements that you want to
tune. See “Selecting Tunable Compensator Elements” on page 5-50.

Design requirements: Select the design requirements that you want the system to
meet after tuning the compensator elements. See “Adding Design Requirements” on
page 5-51.

Optimization: Configure optimization options and view the progress of the response
optimization. See “Optimizing the System's Response” on page 5-59.

Note: When optimizing responses in a SISO Design Task, you cannot add uncertainty to
parameters or compensator elements.

Selecting Tunable Compensator Elements

You can tune elements or parameters within compensators in your system so that
the response of the system meets the design requirements you specify. To specify the
compensator elements to tune:

Select the Compensators pane within the Response Optimization node.

Within the Compensators pane, select the check boxes in the Optimize column
that correspond to the compensator elements you want to tune.

In this example, to tune the Gain in the compensator C, select the check box next to
this element, as shown in the following figure.

Optimize LTI System to Meet Frequency-Domain Requirements

Z]control and Estimation Tools Manager i] |
File Help
= =
ﬂ\l\mrkspace COverviewy Compensstors | Design requiremer‘dslomimizaﬁonl
Ea SISO Design Task Select compensator elements to optimize
rﬁ Design Shapshots
Response Optimization [Optirize Compenzsatar elements | Walug |In'rtia| guessl Miniitaire | it |Typicalv...
r c
rd Gain [T 1] e | e [
r F
r Gain [T v T . [wmt [4
Uze Yalue az Intial Guess |
Start Optimization | Help |
L
[
Response Optimization S

Note: Compensator elements or parameters cannot have uncertainty when used with
frequency-domain based response optimization.

Adding Design Requirements

You can use both frequency-domain and time-domain design requirements to tune
parameters in a control system. The Design requirements pane within the Response
Optimization node of the Control and Estimation Tools Manager provides an interface
to create new design requirements and select those you want to use for a response
optimization.

5-51

5 Optimization-Based Control Design

5-52

This example uses the design specifications described in “Design Requirements” on page
5-44. The following sections each create a new design requirement to meet these
specifications:

+ “Settling Time Design Requirement” on page 5-52

* “Overshoot Design Requirement” on page 5-53

+ “Rise Time Design Requirement” on page 5-54

+ “Actuator Limit Design Requirement” on page 5-56

After you add the design requirements, you can select a subset of requirements for

controller design, as described in “Selecting the Design Requirements to Use During
Response Optimization” on page 5-59.

Settling Time Design Requirement

The first design specification for this example is to have a settling time of 30 seconds or
less. This specification can be represented on a root-locus diagram as a constraint on the
real parts of the poles of the open loop system.

To add this design requirement:
1 Select the Design requirements pane within the Response Optimization node of
the Control and Estimation Tools Manager.

2 Click the Add new design requirement button. This opens the New Design
Requirement dialog box.

Within this dialog box you can specify new design requirements and add them to a
new or existing design or analysis plot.

3 Add a design requirement to the existing root-locus diagram:
a Select Pole/zero settling time from the Design requirement type
menu.
b Select Open-Loop L from the Requirement for response menu.
¢ Enter 30 seconds for the Settling time.
d Click OK.

A vertical line should appear on the root-locus diagram, as shown in the following
figure.

Optimize LTI System to Meet Frequency-Domain Requirements

) SISO Design Tool =10l
File Edit View Designs Analysis Tools ‘Window Help L'l

Mk xo ¥ [@a®N

Root Locus Editor for Open-Loop 1 (OL1)

Imag Lxis

B -4 -2 o 2 4 E
Real fxiz

Rigkt-click on the plats for more desigh options .

Overshoot Design Requirement

The second design specification for this example is to have a percentage overshoot of
10% or less. This specification is related to the damping ratio on a root-locus diagram.
In addition to adding a design requirement with the Add new design requirement
button, you can also right-click directly on the design or analysis plots to add the
requirement, as shown next.

To add this design requirement:

1 Right-click anywhere within the white space of the root-locus diagram in the SISO
Design Tool window. Select Design Requirements > New to open the New Design
Requirement dialog box.

5-53

5 Optimization-Based Control Design

2 Select Percent overshoot as the Design requirement type and enter 10 as the
Percent overshoot.

3 Click OK to add the design requirement to the root-locus diagram. The design
requirement appears as two lines radiating at an angle from the origin, as shown in
the following figure.

) SIS0 Design Tool =10l x|
File Edit Wiew Designs Analysis Tools Window Help

kxo %z &M W

Root Locus Editor for Open-Loog 1 (OL1)

Imag Axis

i 4 = 0 B q g
Real Axiz

Fight-click che plots for more desigh options.

Rise Time Design Requirement

The third design specification for this example is to have a rise time of 10 seconds or less.
This specification is related to a lower limit on a Bode Magnitude diagram.

To add this design requirement:

5-54

Optimize LTI System to Meet Frequency-Domain Requirements

Select the Graphical Tuning pane in the SISO Design Task node of the Control
and Estimation Tools Manager.

For Plot 2, set Plot Type to Open-Loop Bode.

Right-click anywhere within the white space of the open-loop bode diagram in the
SISO Design Tool window. Select Design Requirements > New to open the New
Design Requirement dialog box.

Create a design requirement to represent the rise time and add it to the new Bode

plot:

a
b

C

d

Select Lower gain limit from the Design requirement type menu.
Enter 1e-2 to 0.17 for the Frequency range.

Enter O to O for the Magnitude range.

Click OK.

A Bode diagram appears within the SISO Design Tool window. The magnitude plot
of the Bode diagram includes a horizontal line representing the design requirement,
as shown in the following figure.

5-55

5 Optimization-Based Control Design

5-56

) SIS0 Design Tool i =0 x|
File Edit View Designs Analysis Tools ‘Window Help L'l
w oo
k xo % ?%|@l@\@|k?
Root Locus Editor for Open-Loogp 1 (0017 Open-Loop Bode Editor for Open-Loogp 1 (0L

af

It}

G 355 dB
Freg; 0561 radizec
Stable loop

-150
270

g0 b — — — — DN - —

an

P 201 deg
Freg: 0.424 radizec

-a0
107 107 10" 10" 10°
Frequency (radfsec)

Real &xiz

Roat locus. Left-click to move closed-loop pols to this location.

Actuator Limit Design Requirement

The fourth design specification for this example is to limit the actuator signal to within
+0.7. To add this design requirement:

1 Select the Design requirements pane in the Response Optimization node of the
Control and Estimation Tools Manager.

2 Click the Add new design requirement button to open the New Design
Requirement dialog box.

3 Create a time-domain design requirement to represent the upper limit on the
actuator signal, and add it to a new step response plot in the LTI Viewer:

Optimize LTI System to Meet Frequency-Domain Requirements

M LTI ¥iew
Filz Edit

Select Step response upper amplitude limit from the Design
requirement type menu.

Select Closed Loop r to u from the Requirement for response menu.
Enter O to 10 for the Time range.
Enter 0.7 to 0.7 for the Amplitude range.

Click OK. A second step response plot for the closed loop response from r to u
appears in the LTI Viewer. The plot contains a horizontal line representing the
upper limit on the actuator signal.

To extend this limit for all times (to ¢ =), right click on the black edge of the
design requirement, somewhere toward the right edge, and select Extend to
inf. The diagram should now appear as shown next.

er for SIS0 Design Tool ; ;lglil
Window Help

D& ’Ra E

Step Response
1 1 1 1 1 1 1 1

an 40 a0 =] 70 an =}
Time (zec)

Step Response

1] 10 20 30 40 =0 =10 7o g0 a0
Time (sec)
Eul i [¥ Resk-Time Upcate
To add the corresponding design requirement for the lower limit on the actuator signal:

5-57

5 Optimization-Based Control Design

1 Select the Design requirements pane in the Response Optimization node of the
Control and Estimation Tools Manager.

2 Click the Add new design requirement button to open the New Design
Requirement dialog box.

3 Create a time-domain design requirement to represent the lower limit on the
actuator signal, and add it to the step response plot in the LTI Viewer:

a Select Step response lower amplitude limit from the Design
requirement type menu.

b Select Closed Loop r to ufrom the Requirement for response menu.
¢ Enter O to 10 for the Time range.
d Enter -0.7 to -0.7 for the Amplitude range.

e Click OK. The step response plot now contains a second horizontal line
representing the lower limit on the actuator signal.

f To extend this limit for all times (to ¢ =), right-click in the yellow shaded area
and select Extend to inf. The diagram should now appear as shown in the
following figure.

5-58

Optimize LTI System to Meet Frequency-Domain Requirements

J LTI ¥iewer for SISO Design Tool o]
File Edit ‘Window Help

D& R E

Step Response
T T T T T T T T

Amplitude

30 40 50 g0 70 g0 an
Time (sec)

Step Response

Amplitude

) 10 20 i 40 a0 0 70 an a0
Time (zec)

LTI Wigwver [Real-Time Update

Selecting the Design Requirements to Use During Response Optimization

The design requirements give constraints on the dynamics of the system and the
values of response signals. The table in the Design requirements tab lists all design
requirements in the design and analysis plots. Select the check boxes next to the design
requirements you want to use in the response optimization. This example uses all the
current design requirements.

Optimizing the System's Response

After selecting the compensator elements to tune and adding design requirements for the
response signals to satisfy, you are ready to being the response optimization.

The Optimization pane within the Response Optimization node of the Control and
Estimation Tools Manager displays the progress of the response optimization. The pane

5-59

5 Optimization-Based Control Design

also contains options to configure the types of progress information displayed during the
optimization and options to configure the optimization methods and algorithms.

To optimize the response of the system in this example, click the Start Optimization
button.

The Optimization pane displays the progress of the optimization, iteration by iteration,

as shown next. Termination messages from the optimization method and suggestions for
improving convergence also appear here.

] Control and Estimation Tools Manager

I (=] 3
File Edit Help
dld|9 o
ﬂ Workspace Overview | Compensators | Design requirements Optimization |
E‘@ SIS0 Design Task ~Optimization progress
L[| Desian History
"| Response Optimization Ikeration Eval-Count |Cost funct...| Constrain... | Step size Procedure Opkimization options... |
0 3 0 0.4485 o
1 14 1] 0.1001 0.525 infeasible Display options... |
2 20 0 0 0.0865 | Hessianm...
]
Constructing optimization problem... ;I
Optimization started 07-Aug-2008 10:07:44
Optimization finished 07-Aug-2008 10:07:53
Successful termination. Found a feasible or optimal solution within the specified
tolerances.
=
4
=
Export él

The optimized signals in the design and analysis plots appear as follows:

5-60

Optimize LTI System to Meet Frequency-Domain Requirements

I=I

File Edit WView Designs #nalysis Tools Window Help
« o P
X 0 ¥ &+ S|®%%TN

Root Locus Editor for Open Loop 1 (0013 Open-Loop Bode Editor for Open Loop 1 (0017

-E0

-E0

-100

GM:116dB
-120 | Freg: 0.5681 radizec]
Stable loop

-140 L L

270

180 — — —- . —

a0 R

Ph: 55 deg
Freg: 0185 radisec

: a0
5 4 2 0 2 4 § qp? 10" 10" 10" 10°
Real Lxiz

Frequency (radizec)

Root locus. Left-click to move closed-loop pole to this location.

5-61

5 Optimization-Based Control Design

5-62

) LTI Viewer for SISO Design Task -0l x|
File Edit Window Help
0&| % K|
Step Response
15 | | | | | =
T R ETETi
n
=
£ 05 o
[=%
g il
DS 1 1 1 1 1 1
1] & 10 15 20 25 30
Time (sec)
Step Response
1
05 -
Li}
=
é B5a5a0660 6055860006800 S BB SR OND i A ARG O R A FRA AR
[~%
5 05 - -
-1
a 5 10 15 20 25 30
Time (=ec)
LTI Viewwer ¥ Real-Time Update

Creating and Displaying the Closed-Loop System

After designing a compensator by optimizing the response of the system, you can export
the compensator to the MATLAB workspace, and create a model of the full closed-loop
system.

1 Within the SISO Design Tool window, select File > Export to open the SISO Tool
Export dialog box.

2 Select the compensator you designed, Compensator C, and then click the Export
to Workspace button.

At the command line, enter the following command to create the closed-loop system, CL,
from the open-loop transfer function, open_loopTF, and the compensator, C:

CL=feedback(C*open_loopTF,1)

Optimize LTI System to Meet Frequency-Domain Requirements

This returns the following model:

Zero/pole/gain from input to output "Output':
-0.19414 (s-2)

(s™2 + 0.409s + 0.1136) (s~2 + 3.591s + 3.418)
To create a step response plot of the closed loop system, enter the following command:

step(CL);

This produces the following figure:

-ibix
File Edit View Insert Tools Deskiop Window Help L'l
O dse [N [RAT9ex 08 ad

Step Rezponze
From: In{1} To: Output
1.2 T T T T T

Amplitude

02 I I I 1 1
0 3 15 20 2% 30

Time (zec)

en
=
=1

5-63

5 Optimization-Based Control Design

Designing Linear Controllers for Simulink Models

5-64

When you have Control System Toolbox and Simulink Control Design software, you can
perform frequency-domain optimization of Simulink models.

You can use Simulink Control Design software to configure SISO Design Tool with
compensators, inputs, outputs, and loops computed from a Simulink model. For
more information, see “Creating a SISO Design Task” in Simulink Control Design
documentation.

After you configure the SISO Design Tool, use Simulink Design Optimization software to
optimize the controller parameters of the linearized Simulink model. For an example of
optimization-based control design for a model linearized using Simulink Control Design
software, see “Design Optimization-Based PID Controller for Linearized Simulink Model

(GUI)”.

There is only one difference when tuning compensators derived from Simulink Control
Design software: The tuning of compensators from a Simulink model is done through
the masks of the Simulink blocks representing each compensator. When selecting
parameters to optimize, users can tune the compensator in the pole, zero, or gain format,
or in a format consistent with the Simulink block mask as shown in the following figure.
Changing the compensator format is not possible when optimizing pure SISO Tool
models (those not derived using Simulink Control Design software).

Designing Linear Controllers for Simulink Models

Function Block Parameters: az DTF @

Discrete Transfer Fcn

Implement a z-transform transfer function. Specify the numerator and denominator coefficients in descending
powers of z. The order of the denominater must be greater than or equal to the erder of the numerator.

Main | Data Types | Statehttributesl

Data
Source Value
Numerator: [100.109745431442 -99.1007454314419]

Denominator: [1 -0.888934462738605]
Initial states: 0

External reset: ’None ']

Input processing: [Elements as channels (sample based) ']

[”] optimize by skipping divide by leading denominator coefficient (a0)

Sample time (-1 for inherited): 0.01

[0K J[Cancel H Help Apply

Mask of a Simulink compensator block

5-65

5 Optimization-Based Control Design

=] control and Estimation Tools Manager

File Edit Tools Help
0|3 d| o o
4:\ Workspace Owerviewy Compensators | Design requirementsl Optimizationl

EG Project - airframe_demo

E Operating Points

=8 Simulink Compensatar T

=4 SISO Design Task

L[] Design History
Design Operatin

------ J,a Response Optir

N

~Select compensator elements to optimize

rOptimize Cotnpensstar elemerits | Walue |In'rtia| guessl ittt | Mzzitnurn ITypicaIv...
— airframe_demo/az Controliaz NTE
- Numeratar kP L-g...| [nf dnf] [[infind] |
- Denominator v Parameterized format 893]| [-Inf -Inf] | [Inf Inf] |
r airframe_demo/q Control/g Gamn
ol Gain [27r1a [2778 | amt | i

Right click on @ sompensator name to change its representation.

Uze Valug az Intial Guess |

Start Optimization | Help |

Reszponse Optimization

N L

Response optimization compensators pane

5-66

Lookup Tables

“What are Adaptive Lookup Tables?” on page 6-2

“How to Estimate Lookup Table Values” on page 6-5

“Estimate Constrained Values of a Lookup Table” on page 6-6

“Estimate Lookup Table Values from Data” on page 6-23

“Building Models Using Adaptive Lookup Table Blocks” on page 6-38
“Selecting an Adaptation Method” on page 6-42

“Model Engine Using n-D Adaptive Lookup Table” on page 6-44

“Using Adaptive Lookup Tables in Real-Time Environment” on page 6-58

6 Lookup Tables

What are Adaptive Lookup Tables?

Lookup Tables

Lookup tables store numeric data in a multidimensional array format. In the simpler
two-dimensional case, lookup tables can be represented by matrices. Each element of a
matrix is a numerical quantity, which can be precisely located in terms of two indexing
variables. At higher dimensions, lookup tables can be represented by multidimensional
matrices, whose elements are described in terms of a corresponding number of indexing
variables.

Lookup tables provide a means to capture the dynamic behavior of a physical
(mechanical, electronic, software) system. The behavior of a system with M inputs and N
outputs can be approximately described by using N lookup tables, each consisting of an
array with M dimensions.

You usually generate lookup tables by experimentally collecting or artificially creating
the input and output data of a system. In general, you need as many indexing
parameters as the number of input variables. Each indexing parameter may take a value
within a predetermined set of data points, which are called the breakpoints. The set of all
breakpoints corresponding to an indexing variable is called a grid. Thus, a system with
M inputs is gridded by M sets of breakpoints. The software uses the breakpoints to locate
the array elements, where the output data of the system are stored. For a system with

N outputs, the software locates the N array elements and then stores the corresponding
data at these locations.

After you create a lookup table using the input and output measurements as described
previously, you can use the corresponding multidimensional array of values in
applications without having to remeasure the system outputs. In fact, you need only
the input data to locate the appropriate array elements in the lookup table because the
software reads the approximate system output from the data stored at these locations.
Therefore, a lookup table provides a suitable means of capturing the input-output
mapping of a static system in the form of numeric data stored at predetermined array
locations.

Adaptive Lookup Tables

Statically defined lookup tables, as described in “Lookup Tables” on page 6-2, cannot
accommodate the time-varying behavior (characteristics) of a physical plant. Static
lookup tables establish a permanent and static mapping of input-output behavior of a

What are Adaptive Lookup Tables?

physical system. Conversely, the behavior of actual physical systems often varies with
time due to wear, environmental conditions, and manufacturing tolerances. With such
variations, the static mapping of input-output behavior of a plant described by the lookup
table may no longer provide a valid representation of the plant characteristics.

Adaptive lookup tables incorporate the time-varying behavior of physical plants into the
lookup table generation and maintenance process while providing all of the functionality
of a regular lookup table.

The adaptive lookup table receives the input and output measurements of a plant's
behavior, which are then used to dynamically create and update the content of the
underlying lookup table. In addition to requiring the input data to create the lookup
table, the adaptive lookup table also uses the output data of the plant to recalculate the
table values. For example, you can collect the output data of the plant by placing sensors
at appropriate locations in a physical system.

The software uses the input measurements to locate the array elements by comparing
these input values with the breakpoints defined for each indexing variable. Next, it
uses the output measurements to recalculate the numeric value stored at these array
locations. However, unlike a regular table, which only stores the array data before the
actual use of the lookup table, the adaptive table continuously improves the content of
the lookup table. This continuous improvement of the table data is referred to as the
adaptation process or learning process.

The adaptation process involves statistical and signal processing algorithms to recapture
the input-output behavior of the plant. The adaptive lookup table always tries to provide
a valid representation of the plant dynamics even though the plant behavior may be time
varying. The underlying signal processing algorithms are also robust against reasonable
measurement noise and they provide appropriate filtering of noisy output measurements.

See Also
Adaptive Lookup Table (1D Stair-Fit) | Adaptive Lookup Table (2D Stair-Fit) | Adaptive
Lookup Table (nD Stair-Fit)

Related Examples
. “Model Engine Using n-D Adaptive Lookup Table” on page 6-44

More About
. “About Lookup Table Blocks”

6-3

6 Lookup Tables

. “Building Models Using Adaptive Lookup Table Blocks” on page 6-38

6-4

How to Estimate Lookup Table Values

How to Estimate Lookup Table Values

You can use lookup table Simulink blocks to approximate a system's behavior, as
described in “About Lookup Table Blocks” in the Simulink documentation. After you
build your system using lookup tables, you can use Simulink Design Optimization
software to estimate the table values from measured I/O data.

Estimating lookup table values is an example of estimating parameters which are
matrices or multi-dimensional arrays. The workflow for estimating parameters of a
lookup table consist of the following tasks:

1
2

3
4
5

Creating a Simulink model using lookup table blocks.

Importing the measured input and output (I/0) data from which you want to
estimate the table values.

Analyzing and preparing the I/O data for estimation.
Estimating the lookup table values.

Validating the estimated table values using a validation data set.

Related Examples

“Estimate Lookup Table Values from Data” on page 6-23
“Estimate Constrained Values of a Lookup Table” on page 6-6

6-5

6 Lookup Tables

Estimate Constrained Values of a Lookup Table

In this section...

“Objectives” on page 6-6
“About the Data” on page 6-6
“Open a Parameter Estimation Session” on page 6-6

“Estimate the Monotonically Increasing Table Values Using Default Settings” on page
6-9

“Validate the Estimation Results” on page 6-17

Obijectives

This example shows how to estimate constrained values of a lookup table. Apply
monotonically increasing constraints to the lookup table values, and use the Parameter
Estimation tool to estimate the table values.

About the Data

In this example, use lookup_increasing.mat, which contains the measured I/O data
for estimating the lookup table values. The MAT-file includes the following variables:

+ xdatal — Consists of 602 uniformly-sampled input data points in the range [-5,5].
+ ydatal — Output data corresponding to the input data samples.

Note: The output data is a monotonically increasing function of the input data.

+ timel — Time vector.

Use the I/O data to estimate the values of the lookup table in the lookup_increasing
Simulink model. The table contains eleven values, which are stored in the MATLAB
variable table. To learn more about how to specify the table's values, see “Enter
Breakpoints and Table Data” in the Simulink documentation.

Open a Parameter Estimation Session

To estimate the monotonically increasing lookup table values, first open a new parameter
estimation session.

6-6

Estimate Constrained Values of a Lookup Table

Open the lookup table model by typing the following command at the MATLAB
prompt:

lookup_increasing

This command opens the Simulink model, and loads the estimation data in the
MATLAB workspace.

1-D T(u)

13 »
input output

Loogkup Table
4% xout | yout
To Workspacel ToWorkspace

Double-click the Lookup Table block to view the monotonically increasing constraint
applied to the table output values.

6-7

6 Lookup Tables

Function Block Parameters: Lookup Table @
Lookup Table (n-D)
Perform n-dimensional interpolated table lookup including index searches. The table is a sampled representation of a

function in N variables. Breakpoint sets relate the input values to positions in the table. The first dimension corresponds
to the top (or left) input port.

Table and Breakpoints | Algorithm | Data Types

Number of table dimensions: 1 -
Table data: cumsum(table)

Breakpoints 1: [-3:5]

Edit table and breakpoints... l

Sample time (-1 for inherited): -1

[0K H Cancel H Help l Apply

The Table data field of the Function Block Parameters dialog box shows the
constraint. The cumulative sum function, cumsum, applies a monotonically
increasing constraint on the table output values. This function computes the
cumulative sum of the table values based on estimation of the individual table
elements from the I/O data.

3 In the Simulink model, select Analysis > Parameter Estimation to open a session
with the name lookup_increasing in the Parameter Estimation tool.

6-8

Estimate Constrained Values of a Lookup Table

4\ Parameter Estimation - lookup_increasing EI@
[PARAMETER ESTIMATION VALDATION RSN 5 = =)
|| Open Session v ‘jj E E E‘i Cost Function: Sum Squared Error « |>
[save Session v~ Seect New Select AddPlot PlotModel (5 1ore Options... Estimate
Parameters Experiment Experiments - Response -
FILE PARAMETERS EXFERIMENTS PLOTS OFTIONS ESTIMATE
Data Browser <]

w Parameters

w Experiments

w Results

¥ Preview

Estimate the Monotonically Increasing Table Values Using Default Settings

After you open a session for parameter estimation, as described in “Open a Parameter
Estimation Session” on page 6-6, use the following steps to estimate the constrained
lookup table values:

1 To create a new experiment, on the Parameter Estimation tab, click New
Experiment. Name it EstimationData. Then import the I/O data, xdatal and
ydatal, and the time vector, timel into the experiment. To do this, open the
experiment editor by right-clicking EstimationData and selecting Edit.... Then,
type [timel,ydatal] in the output dialog box and [timel,xdatal] in the input

6 Lookup Tables

dialog box. For more information, see “Import Data” on page 1-6. After you import
the data, the experiment looks as follows:

Edit Experirment: EstirnationData =

B

Outputs
Define measured output signals for this experiment.

lookup increasing/Lookup Tablel [output]
| <1x1 Signal, 602 points> | Hp & X

@ Select Measured Output Signals

Inputs
Optionally define input signals for this experiment.
lookup increasing/input:l {input]

<1x1 Signal, 602 points> | & X

m

@ Select Inputs

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

Select Initial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment,

E Select Parameters

-

Fl ries n e Lk Fl mies & EANY 10

2 Run an initial simulation to view the measured data, simulated table values, and the
initial table values by typing the following commands at the MATLAB prompt:

sim("lookup_increasing®)

figure(l); plot(xdatal,ydatal, "m*", xout, yout, b"")
hold on; plot(-5:5, cumsum(table), “k", "LineWidth®, 2)

6-10

Estimate Constrained Values of a Lookup Table

100 T T T T T

50+

The x-axis and y-axis represent the input and output data, respectively. The figure
shows the following plots:

Measured data — Represented by the magenta stars (*).

Note: As described in “About the Data” on page 6-6, the output data is a
monotonically increasing function of the input data.

+ Initial table values — Represented by the black line.
+ Initial simulation data — Represented by the blue deltas (A).

You can see that the initial table values and simulated data do not match with the
measured data.

To select the table values to estimate, on the Parameter Estimation tab, click
Select Parameters. This opens the Edit:Estimated Parameters dialog. In the
Parameters Tuned for all Experiments panel, click Select parameters to

6-11

6 Lookup Tables

launch the Select Model Variables dialog. Check the box next to table, and click
OK.

pv

Filter by wariable narme

- Variable | Currentva... Used By
i b

timel [0:0.01663...

xdatal [-2.899131...

P Specify expression indexing if necessary (e.g., a(3) or s

o ok 2 cancel () Help

The Edit:Estimated Parameters window looks as follows. The table values are
selected for estimation by default.

6-12

Estimate Constrained Values of a Lookup Table

Edit: Estimated Parameters

Parameters Tuned for all Experiments
table

B [54321012345 - | Hp
E Select parameters
Parameters and Initial States Tuned per Experiment
Experiment: EstimationData =

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

Edit experiment

5| update Model

x

o 0K

Estimate

@ Help

On the Parameter Estimation tab, click Select Experiment. By default,
EstimationData is selected for estimation. If not, check the box under the

Estimation column, and click OK.

6-13

6 Lookup Tables

6-14

Select experiments to include for estimation or validation

Estimatiocn Validation Experiment
| [|Estimati0r1Data

qﬁ:

o ok (3) Hep

To estimate the table values using the default settings, on the Parameter
Estimation tab, click Estimate to open the Parameter Trajectory plot and
Estimation Progress Report window. The Parameter Trajectory plot shows the
change in the parameter values at each iteration.

After the estimation converges, the Parameter Trajectory plot looks like this:

Estimate Constrained Values of a Lookup Table

Iteration plot 1

EstimatedParams
40

30
20

10

Value

-10

-20

-30

-40

0 1 2 3 4 5 6 7 8 9 10
Iteration

The Estimation Progress Report shows the iteration number, the number of
times the objective function is evaluated, and the value of the cost function at the
end of each iteration. After the estimation converges, the Estimation Progress
Report looks like this:

6-15

6 Lookup Tables

E Estimation Progress Report EI@
Iteration | F-count EstimationData
(Minimize)
0 23 2154758
1 45 432574
2 69 4.4064
3 g2 1.1333

‘Optimization started 12-Jun-2014 15:18:24

i »

Estimation converged, 12-Jun-2014 15:18:39

‘logkup_increasing’ updated with estimated parameter values

[Save teration...| |Display Options..| [Estimate |

The estimated parameters are saved in EstimatedParams in the Results
section of the Data Browser pane on the left. To view the results right-click
EstimatedParams and select Open.... The report looks like this:

6-16

Estimate Constrained Values of a Lookup Table

Estimation result(s):
Parameters estimated using experiments:
EstimationData, cost = 11333
Solver output:
Cost: 11333
ExitFlag: 1
FCount: 93
Date: 12-Jun-2014 15:18
Solver termination message:

Lecal minimum found.

Optimization completed because the size of the gradient is less than
the selected value of the function tolerance,

Stopping criteria details:

is less than options. TolFun = 1.000000e-03.

Optimization Metric Options
relative first-order optimality = 153e-13 TolFun= 1e-03 (selected)

table = [-38.505 24.732 13.935 -0.3109 2.564 21,78 34.339 10.588 0.17595 3.9297 14.872]

Optimization completed: The first-order optimality measure, 1.530703e-13,

[Use as initial guess E Update Model Q? Ok

Validate the Estimation Results

After you estimate the table values, as described in “Estimate the Monotonically
Increasing Table Values Using Default Settings” on page 6-9, you use another data
set to validate that you have not over-fitted the model. You can plot and examine the

following plots to validate the estimation results:

Residuals plot

Measured and simulated data plots

To validate the estimation results:

1
2

Create a new experiment to use for validation. Name it Val idationData.

Import the validation I/O data, xdata2 and ydata2, and time vector, time2 in
the Val idationData experiment. To do this, open the experiment editor by right-
clicking Val idationData and selecting Edit.... Then, type [time2,ydata2]

6-17

6 Lookup Tables

in the output dialog box and [time2,xdata2] in the input dialog box. For more
information, see “Import Data” on page 1-6.

3 To select the experiment for validation, click Select Experiments on the
Parameter Estimation tab. The Val idationData experiment is selected for
estimation by default. Deselect the box for estimation and check for validation.

Select Experiments x
Select experiments to include for estimation or validation
Estimation Validation Experiment
0o EstimationData _
= ValidationData I:E::I
oKk (3) Help

4 To select results to use, on the Validation tab, click Select Results. Deselect Use
current parameter values and select EstimatedParams, and then click OK.

Select results to include in validation

Results

[T |Use current parameter values
EstimatedParams

o7 0K () Help

5 The Parameter Estimation tool, displays the experiment plot after validation by

default. Add the residuals plot by checking the corresponding box on the Validation
tab.

6-18

Estimate Constrained Values of a Lookup Table

Plot Measured & Simulated Data

Flot Residuals

PLOT OFTIONS

To start validation, on the Validation tab, click Validate.

You can see that the data simulated using the estimated parameters agrees with the
measured data.

Examine the plots.

a The experiment plot shows the data simulated using the estimated parameters
with the measured validation data.

6-19

6 Lookup Tables

6-20

EI Iteration plot 1 XJ’ Experiment plot: ValidationData Sﬁl

Amplitude

ValidationData

100

output

Measured

Simulated with EstimatedParams

["

I| "

T

ﬂl”"

E——

input
| | |
4 5 6
Time (seconds)

Both data agree closely with each other.

b Click Residual plot: ValidationData to open the residuals plot.

10

Estimate Constrained Values of a Lookup Table

Experiment plot: ValidationData

“| Residual plot: ValidationData |

Residuals for ValidationData
output

20 T

16

Amplitude

0k

-15F

=20 |

Residuals with EstimatedParams

Time (seconds)

The residuals, which show the difference between the simulated and measured
data, lie the range [-15,15]— within 20% of the maximum output variation. This
indicates a good match between the measured and the simulated table data

values.

Plot and examine the validation data, simulated data, and estimated table

values.

sim("lookup_increasing®)

figure(2); plot(xdata2,ydata2, "m*",

xout, yout,"b"")

hold on; plot(-5:5, cumsum(table), "k", "LineWidth", 2)

6-21

6 Lookup Tables

100 T T T T T

50

-50
-6

The plot shows that the table values, shown as the black line, match both the
measured data and the simulated table values. The table data values cover the
entire range of input values, which indicates that all the lookup table values

have been estimated.

6-22

Estimate Lookup Table Values from Data

Estimate Lookup Table Values from Data

In this section...

“Objectives” on page 6-23

“About the Data” on page 6-23

“Open a Parameter Estimation Session” on page 6-23

“Estimate the Table Values Using Default Settings” on page 6-25
“Validate the Estimation Results” on page 6-33

Obijectives

This example shows how to estimate lookup table values from time-domain input-output
(I/0) data.

About the Data

In this example, use the I/0 data in lookup_regullar .mat to estimate the values of a
lookup table. The MAT-file includes the following variables:

+ xdatal — Consists of 63 uniformly-sampled input data points in the range [0,6.5]

+ ydatal — Consists of output data corresponding to the input data samples

* timel — Time vector

Use the I/0 data to estimate the lookup table values in the lookup_regular Simulink
model. The lookup table in the model contains ten values, which are stored in the
MATLAB variable table. The initial table values comprise a vector of 0s. To learn more

about how to model a system using lookup tables, see “Guidelines for Choosing a Lookup
Table” in the Simulink documentation.

Open a Parameter Estimation Session

To estimate the lookup table values, open a Parameter Estimation session.

1 Open the lookup table model by typing the following command at the MATLAB
prompt:

6-23

6 Lookup Tables

lookup_regular

This command opens the Simulink model, and loads the estimation data into the

MATLAB workspace.
1-D T{u)

1} t > > 1)

input output
Logkup Table

]

To Wokspace To Workspace

2 In the Simulink model, select Analysis > Parameter Estimation to open a new
session with name lookup_regular in the Parameter Estimation tool.

6-24

Estimate Lookup Table Values from Data

4\ Parameter Estimation - lookup_reqular EI@
[PARAMETER ESTIMATION VALIDATION
|1 Open Session + % @ E E E‘i Cost Function: Sum Squared Error « |>
5 savesession v Select New Select AddPiot PlotModel 5} ore Options... Estimate
Parameters Experiment Experiments - Response -
FILE FARAMETERS EXPERIMENTS PLOTS OFTIONS ESTIMATE
Data Browser @

w Parameters

w Experiments

w Results

w Preview

Estimate the Table Values Using Default Settings

Use the following steps to estimate the lookup table values.

1 Create a new experiment by clicking New Experiment on the Parameter
Estimation tab. Name it EstimationData. Then import the I/O data, xdatal
and ydatal, and the time vector, timel, into the experiment. To do this open the
experiment editor by right-clicking EstimationData and selecting Edit.... Type
[timel,ydatal] in the output dialog box and [timel,xdatal] in the input dialog
box in the experiment editor. For more information, see “Import Data” on page 1-6.
After you import the data the experiment looks as follows:

6-25

6 Lookup Tables

Define measured output signals for this experiment.

lookup regular/Lookup Table:l joutput] L
|{1}EL Signal, 63 points> v| E} &I x
@ Select Measured Output Signals

Inputs
Optionally define input signals for this experiment.
lookup regularfinput:1 {input)

|<11|:[Signal, 63 puints:»| '| E’ é x
@ Select Inputs

m

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

Select Initial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment.

E Select Parameters

[el Piot & Simulate [J Pt & OK () Help

2 Run an initial simulation to view the I/O data, simulated output, and the initial
table values. To do so, type the following commands at the MATLAB prompt:

sim(" lookup_regular™)

figure(l); plot(xdatal,ydatal, "m*", xout, yout,*b"")

hold on; plot(linspace(0,6.5,10), table, "k", “LineWidth®, 2);
legend("Measured data“®,"Initial simulation data®,"Initial table values®);

6-26

Estimate Lookup Table Values from Data

‘I. 5 T T T T T T
#* Measured data
& Initial simulation data
L Initial table values 4
1 W ****
»
05F *F * _
+
1
0 i 4
0.5 1
Atk 4
_“I X 5 1 1 1 1 1 1
0 1 2 3 4 5 6 7

The x-axis and y-axis of the figure represent the input and output data, respectively.
The figure shows the following plots:

* Measured data — Represented by the magenta stars (¥).

Note: As described in “About the Data” on page 6-6, the output data is a
monotonically increasing function of the input data.

Initial table values — Represented by the black line.

Initial simulation data — Represented by the blue deltas (A).
You can see that the initial table values and simulated data do not match with the
measured data.

To select the table values to estimate, on the Parameter Estimation tab, click the
Select Parameters button to open the Edit:Estimated Parameters dialog. In

6-27

6 Lookup Tables

the Parameters Tuned for all Experiments panel, click Select parameters to
launch the Select Model Variables dialog. Check the box next to table, and click OK.

Filter by wariable name P
b Variable |Current va... Used By
W b
timel [0:016129...
xdatal [1.7185120...

b Specify expression indexing if neceszary (e.qg., a(3) or s.x)

o’ 0K £X cancel (3) Help

The Edit:Estimated Parameters window now looks as follows. The table values
are selected for estimation by default.

6-28

Estimate Lookup Table Values from Data

Edit: Estimated Parameters

Parameters Tuned for all Experiments
table

b |0000000000] - | Hp
E Select parameters
Parameters and Initial States Tuned per Experiment
Experiment: | EstimationData =

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

Edit experiment

5| update Model

x

o OK

Estimate

@ Help

On the Parameter Estimation tab, click Select Experiment. EstimationData

is selected for estimation by default. If not, check the box under the Estimation

column, and click OK.

6-29

6 Lookup Tables

Select experiments to include for estimation or validation

Estimation Validation Experiment
| 0 |Estirr|ationData

qij

o 0k (?) Help

5 To estimate the table values using the default settings, on the Parameter
Estimation tab, click Estimate to open the Parameter Trajectory plot and
Estimation Progress Report window. The Parameter Trajectory plot shows the
change in the parameter values at each iteration.

After the estimation converges, the Parameter Trajectory plot looks like this:

6-30

Estimate Lookup Table Values from Data

Tteration plot 1

EstimatedParams

-1

1.5 -
1 .
0.5F
[4§]
=
m
=
D_
1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 a8 9 10

Iteration

The Estimation Progress Report shows the iteration number, number of times
the objective function is evaluated, and the value of the cost function at the end of
each iteration. After the estimation converges, the Estimation Progress Report
looks like this:

6-31

6 Lookup Tables

E Estimation Progress Report EI@
Iteration | F-count EstimationData
(Minimize)
0 21 271233
1 42 01478

Optimization started 10-Jun-2014 17:14:37

il »

Estimation converged, 10-Jun-2014 17:14:45

‘logkup_regular updated with estimated parameter values ~

[save teration..| [Display Options...| [Estimate

The estimated parameters are saved in EstimatedParams in the Results
section of the Data Browser pane on the left. To view the results, right-click on
EstimatedParams and then select Open.... The report resembles the following.

6-32

Estimate Lookup Table Values from Data

View Result : EstimatedParams
Estimation result(s):
table = [0.021165 069751 1.0635 0.85461 0.22361 -0.468582 -0.93019 -0.96984 -0.50022 0.15432]

Parameters estimated using experiments:
EstimationData, cost = 0.14785

Solver cutput:
Cost: 0.14785
ExitFlag: 1
FCount: 43
Date: 10-Jun-2014 17:14
Solver termination message:

Lecal minimum found.

Optimization completed because the size of the gradient is less than
the selected value of the function tolerance.

Stopping criteria details:

Optimization completed: The first-order optimality measure, 1.181520e-14,
is less than options. TolFun = 1.000000e-03.

Optimization Metric Options
relative first-order optimality = 118e-14 TolFun = 1e-03 (selected)

EUseasinﬂialguess IJ‘E_g‘Up-dateMudel Q?OK

This report includes the estimated parameter values, the final value of the cost
function, and other optimization results. You can see that the optimization stopped
when the size of the gradient, 1.18e-14 was less than the criteria value, le-3.

Validate the Estimation Results

After you estimate the table values, as described in “Estimate the Table Values Using
Default Settings” on page 6-25, you must use another data set to validate that you
have not over-fitted the model. You can plot and examine the following plots to validate
the estimation results:

* Residuals plot

* Measured and simulated data plots

To validate the estimation results:

6-33

6 Lookup Tables

1 Create a new experiment to use for validation. Name it Val idationData. Import
the validation I/O data, xdata2 and ydata2, and time vector, time2 in the
Val idationData experiment. To do this open the experiment editor by right-
clicking Val idationData and selecting Edit.... Then, type [time2,ydata?] in the
output dialog box and [time2,xdata2] in the input dialog box in the experiment
editor. For more information, see “Import Data” on page 1-6.

2 To select the experiment for validation, on the Parameter Estimation tab, click
Select Experiments. The Val idationData experiment is selected for estimation
by default. Deselect the box for estimation and check it for validation.

Select experiments to include for estimation or validation

Estimation Validation Experiment
[l EstimationData 5B
ValidationData E:}I
& oK () Help

3 To select results to use, on the Validation tab, click Select Results. Deselect Use
current parameter values and select EstimatedParams, and click OK.

Select results to include in validation

Results
i

EstimatedParams

o7 0K () Help

4 The Parameter Estimation tool, by default, displays the experiment plot after
validation. Add the residuals plot by checking the corresponding box on the
Validation tab.

6-34

Estimate Lookup Table Values from Data

Plot Measured & Simulated Data
Flot Residuals

PLOT OFTIONS

To start validation, on the Validation tab, click Validate.

Examine the plots

a Experiment plot

[Tterationplotl | Experiment plot: ValidationData o |

ValidationData

output
2 T T T T Ip

Measured
Simulated with EstimatedParams

1
3

Amplitude
o
-
4o
=

Time (seconds)

6-35

6 Lookup Tables

You can see that the data simulated using the estimated parameters agrees with
the measured validation data.

b Click Residual plot: ValidationData to open the residuals plot.

Experiment plot: ValidationData | Residual plot: ValidationData |
Residuals for ValidationData
output
Cz T T T T T
| Residuals with EstimatedParams
0.15 —

Amplitude

0.2 1 1 1 1 1 1 1 1

Time (seconds)

The residuals, which show the difference between the simulated and measured
data, lie in the range [-0.15,0.15]— within 15% of the maximum output
variation. This indicates a good match between the measured and the simulated
table data values.

¢ Plot and examine the estimated table values against the validation data set and
the simulated table values by typing the following commands at the MATLAB
prompt.

6-36

Estimate Lookup Table Values from Data

sim("lookup_regular™)
figure(2); plot(xdata2,ydata2, "m*", xout, yout,"b"")
hold on; plot(linspace(0,6.5,10), table, “k", "LineWidth", 2)

1.5 T T T T T T

The plot shows that the table values, displayed as the black line, match both
the validation data and the simulated table values. The table data values cover
the entire range of input values, which indicates that all the lookup table values
have been estimated.

6-37

6 Lookup Tables

Building Models Using Adaptive Lookup Table Blocks

Simulink Design Optimization software provides blocks for modeling systems as adaptive
lookup tables. You can use the adaptive lookup table blocks to create lookup tables from
measured or simulated data. You build a model using the adaptive lookup table blocks,
and then simulate the model to adapt the lookup table values to the time-varying I/O
data. During simulation, the software uses the input data to locate the table values, and
then uses the output data to recalculate the table values. The updated table values are
stored in the adaptive lookup table block. For more information, see “What are Adaptive
Lookup Tables?” on page 6-2.

The Adaptive Lookup Table library has the following blocks:

+ Adaptive Lookup Table (1D Stair-Fit) — One-dimensional adaptive lookup table
+ Adaptive Lookup Table (2D Stair-Fit) — Two-dimensional adaptive lookup table
+ Adaptive Lookup Table (nD Stair-Fit) — Multidimensional adaptive lookup table

Note: Use the Adaptive Lookup Table (nD Stair-Fit) block to create lookup tables of
three or more dimensions.

To access the Adaptive Lookup Tables library:

1 Open the Simulink Library Browser.

At the MATLAB prompt, enter simul ink.
2 Open the Simulink Design Optimization library.

In the Libraries pane, expand the Simulink Design Optimization node.

3 In the Simulink Design Optimization library tree, click Adaptive Lookup Tables.

6-38

Building Models Using Adaptive Lookup Table Blocks

+3 simulink Library Browser EI@

File Edit View Help
[l = » Enter search term - “ @{

Libraries.

+-[P| Neural Network Toolbox
El Real-Time Windows Target
E‘ Report Generator
- (%] Robust Control Toolbox
El SimEvents
El Simscape
- [P simulink 30 Animation
E Simulink Coder Adsptive Lnntu:t';'ahle (1D Stair- Adaptive Lsmu;“':'sbls (2D Stair- Adaptive Ls:;(u:“:!'sbls {nD Stair-
+ El Simulink Contral Design))

—El Simulink Design Optimization

odel Verification
MS Blocks
ignal Constraints
Simulink Design Verifier

- [P simulink Extras

Simulink Verification and Validation -

Library: Simulink Design Optimization/Adaptive Lookup Tables | Search Results: (none) I Frequently Used

+DTiu) 2DT(u) D T(u)
y Au) ¥ Au

o [F]

3]

m

Showing: Simulink Design Optimization/Adaptive Lookup Tables

By default, the Adaptive Lookup Table blocks have two inputs and outputs. You can
display additional inputs and outputs in a block by selecting the corresponding options in

the Function Block Parameters dialog box. To learn more about the options, see the block
reference pages.

h vp

Ay

A Tin M

M Enakle

3 Lock Tout [
oC

Adaptive Loockup Table
(2D StairFit)

Adaptive Lookup Table Block Showing Inputs and Outputs

The 2-D Adaptive Lookup Table block has the following inputs and outputs:

u and y — Input and output data of the system being modeled, respectively.

6-39

6 Lookup Tables

6-40

For example, to model an engine's efficiency as a function of engine rpm and manifold
pressure, specify U as the rpm, y as the pressure, and y as the efficiency signals.

* Tin — The initial table data.

+ Enable — Signal to enable, disable, or reset the adaptation process.
+ Lock — Signal to update only specified cells in the table.

* y — Value of the cell currently being adapted.

* N — Number of the cell currently being adapted.

* Tout — Values of the adapted table data.

For more information on how to use adaptive lookup tables, see “Model Engine Using n-D
Adaptive Lookup Table” on page 6-44.

A typical Simulink diagram using an adaptive lookup table block is shown in the next
figure.

Experiments| Data

Adaptive Table Outputs

Cell Number

g —n

Ensble Adapted Table Values

B S o—»Enatie Tout @
—
NOT
Adaptive Lookup

Table (nD Stair-Fit)

ON

Simulink Diagram Using an Adaptive Lookup Table

In this figure, the Experiment Data block imports a set of experimental data into
Simulink through MATLAB workspace variables. The initial table is specified in the
block mask parameters. When the simulation runs, the initial table begins to adapt to
new data inputs and the resulting table is copied to the block's output.

See Also
Adaptive Lookup Table (1D Stair-Fit) | Adaptive Lookup Table (2D Stair-Fit) | Adaptive
Lookup Table (nD Stair-Fit)

Related Examples
. “Model Engine Using n-D Adaptive Lookup Table” on page 6-44

Building Models Using Adaptive Lookup Table Blocks

More About
. “What are Adaptive Lookup Tables?” on page 6-2
. “Selecting an Adaptation Method” on page 6-42

6-41

6 Lookup Tables

Selecting an Adaptation Method

6-42

You specify the algorithm using the Adaptation Method drop-down list in the Function
Block Parameters dialog box of an adaptive lookup table block. This section discusses the
details of these algorithms.

Sample Mean

Sample mean provides the average value of n output data samples and is defined as:
~ 18
y(n) ==Y ¥
nia

where y(i) is the i measurement collected within a particular cell. For each input

data u, the sample mean at the corresponding cell is updated using the output data
measurement, y. Instead of accumulating n samples of data for each cell, a recursive
relation is used to calculate the sample mean. The recursive expression is obtained by the
following equation:

N L= -1 1 n-1- 1
y(n) = ;[Z y(L)+y(n):| —T{EZ y(z)]+;y(n) = Ty(n 1)+;y(n)

i=1 =1

where y(n) is the n'" data sample.

Defining a priori estimation error as e(n) = y(n) - Si(n— 1), the recursive relation can be

written as:
~ ~ 1
y(n) =y(n-1)+—e(n)
n

where n >1 and the initial estimate y(0) is arbitrary.

In this expression, only the number of samples, n, for each cell— rather than n data
samples—is stored in memory.

Selecting an Adaptation Method

Sample Mean with Forgetting

The adaptation method “Sample Mean” on page 6-42 has an infinite memory. The

past data samples have the same weight as the final sample in calculating the sample
mean. Sample mean (with forgetting) uses an algorithm with a forgetting factor
or Adaptation gain that puts more weight on the more recent samples. This algorithm
provides robustness against initial response transients of the plant and an adjustable
speed of adaptation. Sample mean (with forgetting) is defined as:

3’(774) = n;n—zz K”_iy(i)

Zizl Ao

n-1 . PR
- DAY +y(m) | = =D S -1+ Ly
YAl s(n) s(n)

where Le[0,1] is the Adaptation gain and s(k) = Zilkn_i :
Defining a priori estimation error as e(n) = y(n)— Sl(n— 1), where n >1 and the initial
estimate 3/(0) is arbitrary, the recursive relation can be written as:

1-A
1-A"

e(n)

Y = Y-+ —e(n) = yn—-1)+
s(n)

A small value of A results in faster adaptation. A value of O indicates short memory (last
data becomes the table value), and a value of 1 indicates long memory (average all data
received in a cell).

6-43

6 Lookup Tables

Model Engine Using n-D Adaptive Lookup Table

In this section...

“Objectives” on page 6-44

“About the Data” on page 6-44

“Building a Model Using Adaptive Lookup Table Blocks” on page 6-45
“Adapting the Lookup Table Values Using Time-Varying I/O Data” on page 6-54

Objectives

In this example, you learn how to capture the time-varying behavior of an engine using
an n-D adaptive lookup table. You accomplish the following tasks using the Simulink
software:

+ Configure an adaptive lookup table block to model your system.

+ Simulate the model to update the lookup table values dynamically.

+ Export the adapted lookup table values to the MATLAB workspace.

* Lock a specific cell in the table during adaptation.

* Disable the adaptation process and use the adaptive lookup table as a static lookup
table.

About the Data

In this example, you use the data in vedata.mat which contains the following variables
measured from an engine:

* X — 10 input breakpoints for intake manifold pressure in the range [10,100]

* Y — 36 input breakpoints for engine speed in the range [0,7000]

+ Z— 10x36 matrix of table data for engine volumetric efficiency

To learn more about breakpoints and table data, see “Anatomy of a Lookup Table” in
the Simulink documentation.

The output volumetric efficiency of the engine is time varying, and a function of two
inputs—intake manifold pressure and engine speed. The data in the MAT-file is used to
generate the time-varying input and output (I/O) data for the engine.

6-44

Model Engine Using n-D Adaptive Lookup Table

Building a Model Using Adaptive Lookup Table Blocks

In this portion of the tutorial, you learn how to build a model of an engine using an
Adaptive Lookup Table block.

1 Open a preconfigured Simulink model by typing the model name at the MATLAB
prompt:

enginetablel_data

The Experimental Data subsystem in the Simulink model generates time-varying I/
O data during simulation.

% enginetablel _data EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
B-E e EO-E UOP = O -

enginetablel_data

@® |[*a|enginetablel_data b

Experimental Data

b E®

u

b4
Ready 100% FixedStepDiscrete

This command also loads the variables X, Y and Z into the MATLAB workspace. To
learn more about this data, see “About the Data” on page 6-44.

2 Add an Adaptive Lookup Table block to the Simulink model.
a Open the Simulink Library Browser.
At the MATLAB prompt, enter simul ink.

6-45

6 Lookup Tables

b Open the Simulink Design Optimization library.

In the Libraries pane, expand the Simulink Design Optimization node.

¢ In the Simulink Design Optimization library tree, click Adaptive Lookup

Tables.

bﬁ Simulink Library Browser
File Edit

F 3 »

Libraries

View Help

Enter search term

- # e

[F=5(EoR =

+-[*a] Neural Netw ork Toolbox
E Real-Time Windows Target
E‘ Report Generator

; E‘ Robust Control Toolbox
+-[Pa] SimEvents

+ E Simscape

-[Fa] simulink 30 Animation
+~[P] Simulink Coder

+-[%a] Simuiink Control Design

: E Simulink Design Optimization

Model Verification

RMS Blocks

- Signal Constraints.

E‘ Simulink Design Verifier

[%a] Simulink Extras

+

(adaptive Lookup Tables

E‘ Simulink Verification and Validation

Library: Simulink Design Optimization/&daptive Lockup Tables | Search Results: (none) | Frequently Used

1D T(u)

2D T(u)

D T{u)

Adaptive Lookup Table (1D Stair-
Fit)

m

Adaptive Lookup Table (2D Stair-
Fit)

Adaptive Lockup Table (nD Stair-
Fit)

Showing: Simulink Design Optimization/Adaptive Lookup Tables

d Drag and drop the Adaptive Lookup Table (nD Stair-Fit) block from the
Adaptive Lookup Tables library to the Simulink model window.

Experimental T ata

up

2-D Tiu}

Adaptive Lookup
Table (nD Stair-Fit)

3 Double-click the Adaptive Lookup Table (nD Stair-Fit) block to open the Function
Block Parameters: Adaptive Lookup Table (nD Stair-Fit) dialog box.

6-46

Model Engine Using n-D Adaptive Lookup Table

Functien Block Parameters: Adaptive Lookup Table (nD Stair-Fit) @I
Adaptive Lookup Table (nD} (mask) (link)

Perform adaptive table lookup. Breakpoints relate the coordinate
inputs to cell locations in the table. The data is used to dynamically
update the cell values at these locations.

Parameters

Number of table dimensions:
2!

Table breakpoints (cell array):

1[10,22,31,40], [10,22,31,407}

[C] Make initial table an input
Table data (initial):
[456;16 19 20;10 18 23]
Table numbering data:

[123;456;7809]

Adaptation method: ISampIe mean (with forgetting) -

Adaptation gain (0 to 1):
0.9
[T] Make adapted table an output
[T] Add adaptation enable/disable/reset port
[T] Add cell lock enable/disable port

Action for out-of-range input II.gnore -

[oK H Cancel H Help ‘ Apply

4 In the Function Block Parameters dialog box:
a Specify the following block parameters:

+ Table breakpoints (cell array) — Enter {[X; 110], [Y; 7200]} to
specify the range of input breakpoints.

+ Table data (initial) — Enter rand(10,36) to specify random numbers as
the initial table values for the volumetric efficiency.

6-47

6 Lookup Tables

6-48

* Table numbering data — Enter reshape(1:360,10,36) to specify a
numbering scheme for the table cells.

Verify that Sample mean (with forgetting) is selected in the Adaptation
method drop-down list.

Enter 0.98 in the Adaptation gain (0 to 1) field to specify the forgetting factor
for the Sample mean (with forgetting) adaptation algorithm.

An adaptation gain close to 1 indicates high robustness of the lookup table
values to input noise. To learn more about the adaptation gain, see “Sample
Mean with Forgetting” in “Selecting an Adaptation Method”.

Select the Make adapted table an output check box.

This action adds a new port named Tout to the Adaptive Lookup Table block.
You use this port to plot the table values as they are being adapted.

Select the Add adaptation enable/disable/reset port check box.

This action adds a new port named Enable to the Adaptive Lookup Table block.
You use this port to enable or disable the adaptation process.

Select the Add cell lock enable/disable port check box.

This action adds a new port named Lock to the Adaptive Lookup Table block.
You use this port to lock a cell during the adaptation process.

Verify that Ignore is selected in the Action for out-of-range drop-down list.

This selection specifies that the software ignores any time-varying inputs
outside the range of input breakpoints during adaptation.

Tip To learn more, see Adaptive Lookup Table (nD Stair-Fit) block reference
page.

After you configure the parameters, the block parameters dialog box looks like
the following figure.

Model Engine Using n-D Adaptive Lookup Table

h

Function Block Parameters: Adaptive Lookup Table (nD Stair-Fit)

Adaptive Lookup Table (nD) (mask) (link)

Perform adaptive table lookup. Breakpoints relate the coordinate
inputs to cell locations in the table. The data is used to dynamically

update the cell values at these locations.

Parameters

Number of table dimensions:

[

Table breakpoints (cell array):
{[X; 1101, [Y; 72001}

[”] Make initial table an input
Table data (initial):
rand(10,36)

Table numbering data:

reshape(1:360,10,36)

Adaptation method: [Sample mean (with forgetting)

Adaptation gain (0 to 1):
0.98
Make adapted table an output
Add adaptation enable/disable/reset port
Add cell lock enable/disable port

Action for out-of-range input [Ignore

z)

[0K H Cancel H Help

[apoly |

==

Experimental T ata

up Au 2-DT(u}p

Tout
Y Lock

Adaptive Lookup
Table (nD Stair-Fit)

Click OK to close the Function Block Parameters dialog box.

The Simulink model now looks similar to the following figure.

6-49

6 Lookup Tables

5 Assign the input and output data to the engine model by connecting the U and Y
ports of the Experimental Data block to the u and y ports of the Adaptive Lookup
Table block, respectively.

Experimental Dats

u u 2-DT(u)

e ¥

 Enabiek

Tout P
N Lock

Adaptive Lookup
Table (nD Stair-Fit}

Tip To learn how to connect blocks in the Simulink model window, see “Connect
Blocks” in the Simulink documentation.

6 Design a logic using Simulink blocks to enable or disable the adaptation process.
Connect the logic to the Adaptive Lookup Table block, as shown in the following
figure.

Experimental Data

u U 2-D Tiu}

VP
b >y

ON

I) NP
_q\o—b Enable
|:| —
Manual Switch
Tout pr
MLlock

Adaptive Lookup
Table (nD Stair-Fit)

This logic outputs an initial value of 1 which enables the adaptation process.

7 Design a logic to lock a cell during adaptation. Connect the logic to the Adaptive
Lookup Table block, as shown in the following figure.

6-50

Model Engine Using n-D Adaptive Lookup Table

Experimental D ata

u »{u 2-DT(u)
yp
W >y
ON
NP
R 3
B J N
—3
‘—bual Switch
-, Tout p
Lock
—r—

Manual Switchi Rdaptive Lookup

Table (nD Stair-Fit)
In the Simulink Library Browser, select the Simulink > Sinks library, and drag

Display blocks to the model window. Connect the blocks, as shown in the following
figure.

Experimental D ata

- 0 o v IEI

¥ >y Displayt
oN s
sy ,
1 ———————» 3
_q\°—’ Enable
-
»us. Swich
S Toutp
L s

Manual Switch1

Adaptive Lookup
Table (nD Stair-Fit)

During simulation, the Display blocks show the following:

+ Display block — Shows the value of the current cell being adapted.
+ Displayl block — Shows the number of the current cell being adapted.
Write a MATLAB function to plot the lookup table values as they adapt during

simulation.

Alternatively, type enginetable at the MATLAB prompt to open a preconfigured
Simulink model. The EFficiency Surface subsystem contains a function to plot
the lookup table values, as shown in the next figure.

6-51

6 Lookup Tables

Experimental D ata

Adaptive Table Outputs

N 2-DTiu)
¢ ik y El

Cell Number

1] S |

Trigger

‘_. Graph Trigger £
k“u > Tout | Adapted Table

Lock

ON

)

Lodk — -
Adaptive Lookup Efficiensy Surface

Table (nD Stair-Fit)

10 Connect a To Workspace block to export the adapted table values:

a Inthe Simulink Library Browser, select the Simulink > Sinks library, and drag
the To Workspace block to the model window.

To learn more about this block, see the “To Workspace” block reference page in
the Simulink documentation.

b Double-click the To Workspace block to open the Sink Block Parameters dialog
box, and type Tout in the Variable name field.

6-52

Model Engine Using n-D Adaptive Lookup Table

Sink Block Parameters: To Workspace
To Workspace
Write input to specified timeseries, array, or structure in a
workspace. For menu-based simulation, data is written in the
MATLAB base workspace. Data is not available until the simulation is
stopped or paused. For command-line simulation using the sim

command, the workspace is specified using DstWorkspace field in the
option structure.

To log a bus signal, use "Timeseries" save format.

Parameters

Variable name:

==

[fou

Limit data points to last:

inf

Decimation:

1

Sample time (-1 for inherited):
-1

Save format: IStructu re

[7] Log fixed-point data as a fi object

[0K]I Cancel H Help Apply

Click OK.

Connect the To Workspace block to the adaptive lookup table output signal

Tout, as shown in the next figure.

Experimental Data

u o, 20T

ON

[

Adaptive Table Cutputs
Y IE'

Cell Number

" @
Graph Trigger

Tout

Lock

Adaptive Lookup
Table (nD Stair-Fit)

Adapted Table

£

To Works pace

Efficiency Suface

6-53

6 Lookup Tables

You have now built the model for updating and viewing the adaptive lookup table values.
You must now simulate the model to start the adaptation, as described in “Adapting the
Lookup Table Values Using Time-Varying I/O Data” on page 6-54.

Adapting the Lookup Table Values Using Time-Varying 1/O Data

In this portion of the tutorial, you learn how to update the lookup table values to adapt to
the time-varying input and output values.

You must have already built the Simulink model, as described “Building a Model Using
Adaptive Lookup Table Blocks” on page 6-45.

To perform the adaptation:

1 In the Simulink Editor, specify the simulation time as inf.

The simulation time of infinity specifies that the adaptation process continues as
long as the input and output values of the engine change.

2 In the Simulink Editor, select Simulation > Run to start the adaptation process.

A figure window opens that shows the volumetric efficiency of the engine as a
function of the intake manifold pressure and engine speed:

The left plot shows the measured volumetric efficiency as a function of intake
manifold pressure and engine speed.

The right plot shows the volumetric efficiency as it adapts with the time-varying
intake manifold pressure and engine speed.

6-54

Model Engine Using n-D Adaptive Lookup Table

ol

File Edt View Insert Tools Desktop Window Help
BEE RIS R = = =

Plant Sutface using Measured Data Plant Surface using Adaptive Lookup Table (Stair-fit)

=
o =

=1
@

Wolumetric Efficiency
Wolurmetric Efficiency

B000

o 4000

2000

Intake Manifold Pressure oo Engine Speed (rpm) Intake Manifold Pressure 0 p

*Pa) kPa) Engine Speed (pm)

During simulation, the lookup table values displayed on the right plot adapt to the
variations in the I/0O data. The left and the right plots resemble each other after a
few seconds, as shown in the next figure.

[)-raure =

File Edt View Insert Tools Desktop Window Help
BEE IS R = = =

Plant Sufface using Measured Data Plant Surface using Adaptive Lookup Table (Stair-fit)

09 09
= =
g 5
2 o8 208
i i
o o
T 0.7 = 074
£ £
=] =]
] =]
> 06 = 08
0.5 0.5
100 100
.) 5000 R : BO00
40 . 4000 40 : g 4000
2000 2000
Intake hanifold Pressure 0 g Engine Speed (rpm) Intake Manifold Pressure 00 Engine Speed (rpm)

(kPa) (kPa)

6-55

6 Lookup Tables

6-56

Tip During simulation, the Cell Number and Adaptive Table Outputs blocks in
the Simulink model display the cell number, and the adapted lookup table value in
the cell, respectively.

Pause the simulation by selecting Simulation > Pause.

This action also exports the adapted table values Tout to the MATLAB workspace.

Note: After you pause the simulation, the adapted table values are stored in the
Adaptive Lookup Table block.

Examine that the left and the right plots match. This resemblance indicates that the
table values have adapted to the time-varying I/O data.

Lock a table cell so that only one cell adapts. You may find this feature useful if a
portion of the data is highly erratic or otherwise difficult for the algorithm to handle.

a Select Simulation > Run to restart the simulation.

b Double-click the Lock block. This action toggles the switch and feeds the output
of the ON block to theLock input port of the Adaptive Lookup Table(nD
Stair-Fit) block.

You can view the number of the locked cell in the Cell Number block in the
Simulink model.

After the table values adapt to the time-varying I/O data, you can continue to use the
Adaptive Lookup Table block as a static lookup table:

a In the Simulink model window, double-click the Enable block. This action
toggles the switch, and disables the adaptation.

b Select Simulation > Run to restart the simulation, if it is not already running.

During simulation, the Adaptive Lookup Table block works like a static lookup
table, and continues to estimate the output values as the input values change.
You can see the current lookup table value in the Adaptive Table Outputs
block in the Simulink model window.

Model Engine Using n-D Adaptive Lookup Table

Note: After you disable the adaptation, the Adaptive Lookup Table block does not
update the stored table values, and the figure that displays the table values does not
update.

See Also
Adaptive Lookup Table (nD Stair-Fit)

More About
. “What are Adaptive Lookup Tables?” on page 6-2

6-57

6 Lookup Tables

Using Adaptive Lookup Tables in Real-Time Environment

You can use experimental data from sensor measurements collected by running various
tests on a system in real time. The measured data is then sent to the adaptive table block
to generate a lookup table describing the relation between the system inputs and output.

You can also use the Adaptive Lookup Table block in a real-time environment, where
some time-varying properties of a system need to be captured. To do so, generate C code
using Simulink Coder™ code generation software that can then be run in Simulink Real-

Time™ or dSPACE® software. Because you can start, stop, or reset the adaptation if you
want, use logic to enable the adaptation of the table data only when it is desired. The
cell number output N, and the Enable and Lock inputs facilitate this process. Use the
Enable input to start and stop the adaptation and the Lock input to update only one of
the table cells. The Lock input combined with some logic using the cell number output N
provide the means for updating only the desired table cells during a simulation run.

See Also
Adaptive Lookup Table (1D Stair-Fit) | Adaptive Lookup Table (2D Stair-Fit) | Adaptive
Lookup Table (nD Stair-Fit)

Related Examples
. “Model Engine Using n-D Adaptive Lookup Table” on page 6-44

More About
. “What are Adaptive Lookup Tables?” on page 6-2

6-58

